首页> 外文学位 >Zinc Oxide Nanostructures: Synthesis, Doping and Growth Mechanism.
【24h】

Zinc Oxide Nanostructures: Synthesis, Doping and Growth Mechanism.

机译:氧化锌纳米结构:合成,掺杂和生长机理。

获取原文
获取原文并翻译 | 示例

摘要

Over the past decade, the study of zinc oxide (ZnO) II-VI semiconducting nanostructures has been a burgeoning research area because of this material's unique electrical and optical properties. Despite the promise of its characteristics for numerous applications, usage of ZnO in the fabrication of nanoscale devices on a commercial scale remains a challenge because of our lack of knowledge of the underlying physics and chemistry of nanostructures. Sustainable progress in nanowire manufacturing techniques requires that we first undertake basic studies to address these poorly understood underlying concepts before we embark on applied engineering. If these fundamental studies prove successful, then characterization, fabrication, and large-scale integration of nanostructures that use ZnO could be applied to a range of engineering fields. This doctoral dissertation is primarily concerned with the synthesis and doping required for the creation of novel ZnO nanostructures and the growth mechanisms of such structures. Numerous studies have been made of various kinds of ZnO nanostructures. However, no studies have been reported of systematic theoretical modeling that uses both density functional theory and as-synthesized nanostructures to explain the growth mechanisms involved in these devices. First, sulfur-doped ZnO nanostars, synthesized through a hydrothermal method, will be discussed. This section uses ab initio simulations in discussing the synthesis of novel ZnO nanostructures and their proposed growth mechanisms. Moreover, this discussion also addresses the optical properties of ZnO structures that cause sulfur doping to enhance their emission of green light. The next section introduces a novel synthetic methodology to reliably produce well-aligned vertical ZnO nanowire arrays on amorphous substrates. Vertical alignment of nanowires significantly improves the performance of devices like LEDs and solar cells. Because these vertically aligned arrays have historically been made using sapphire substrates that hinder their commercialization, substantial effort has been invested in using ZnO nanocrystal seeds to grow vertically aligned ZnO nanowires on silicon substrates. Well-known synthetic methods, such as zinc acetate dissolved in methanol or zinc acetate combined with sodium hydroxide (or potassium hydroxide), have typically been used in pursuit of this goal without a detailed understanding of the mechanisms of seed creation. The consequence of this lack of knowledge has been inconsistent reproducibility in growing vertically aligned nanowires on silicon substrates. This discussion includes the details of mechanisms that explain the why and how of creation of vertical/misoriented ZnO nanocrystal seeds on silicon substrates. In addition, a preferential c-axis-oriented ZnO nanocrystal seed has been successfully synthesized using a solution composed of ammonium hydroxide (NH4OH) and zinc acetate (Zn(O2CCH3)2). Lastly, the synthesis of sea urchin-like microstructures known as ZnO sea urchins will be introduced. Among the various kinds ZnO structures, the ZnO sea urchin is a integrated structure composed of a 3-D microsphere and 1-D nanowires. Dye-sensitized solar cells (DSSCs) made of ZnO sea urchins have shown a higher power conversion efficiency than planar nanowires. This is because ZnO sea urchins have a higher surface area per unit of volume than planar nanowire arrays. This larger surface area allows larger amounts of dye to access the semiconducting nanowires. We have synthesized the sea urchin structures composed of ZnOxPy microspheres, a mixed of zinc phosphide (Zn 3P2) and ZnO phase, encapsulated in an array of ZnO nanowires. Synthesis of these interesting structures was achieved without resorting to the prefabricated 3-D microsphere templates that other groups used in previous studies. This new approach to the synthesis of ZnO sea urchin structures was accomplished by simply adding Zn3P2 powder to the C (graphite) and ZnO source powders in a chemical vapor transport method. The ZnO sea urchin's material properties and growth mechanism will be characterized and discussed in detail.
机译:在过去的十年中,由于氧化锌(ZnO)II-VI半导体纳米结构的独特电学和光学特性,其研究一直处于蓬勃发展的研究领域。尽管其特性有望在众多应用中使用,但由于我们对纳米结构的基本物理和化学知识缺乏,在商业规模的纳米级器件制造中使用ZnO仍然是一个挑战。纳米线制造技术的可持续发展要求我们在着手应用工程之前,首先进行基础研究以解决这些难以理解的基本概念。如果这些基础研究证明成功,那么使用ZnO的纳米结构的表征,制造和大规模集成可以应用于一系列工程领域。该博士论文主要涉及合成新型ZnO纳米结构所需的合成和掺杂以及此类结构的生长机理。已经对各种类型的ZnO纳米结构进行了许多研究。但是,尚无关于使用密度泛函理论和合成纳米结构来解释这些器件生长机制的系统理论建模的研究的报道。首先,将讨论通过水热法合成的掺杂硫的ZnO纳米星。本节使用从头算模拟来讨论新型ZnO纳米结构的合成及其拟议的生长机理。此外,该讨论还涉及引起硫掺杂以增强其绿光发射的ZnO结构的光学特性。下一节将介绍一种新颖的合成方法,以在非晶衬底上可靠地生产出排列良好的垂直ZnO纳米线阵列。纳米线的垂直排列可显着提高LED和太阳能电池等设备的性能。由于这些垂直排列的阵列历史上是使用阻碍其商业化的蓝宝石衬底制成的,因此已投入大量精力来使用ZnO纳米晶种在硅衬底上生长垂直排列的ZnO纳米线。众所周知的合成方法,例如溶解在甲醇中的乙酸锌或与氢氧化钠(或氢氧化钾)结合的乙酸锌,通常用于实现该目标,而没有对种子产生机理的详细了解。缺乏知识的结果是在硅基板上生长垂直排列的纳米线时再现性不一致。该讨论包括机制的细节,这些机制解释了为什么以及如何在硅衬底上创建垂直/取向错误的ZnO纳米晶种子。此外,使用氢氧化铵(NH4OH)和醋酸锌(Zn(O2CCH3)2)组成的溶液已成功合成了优先的c轴取向ZnO纳米晶种。最后,将介绍称为ZnO海胆的海胆状微结构的合成。在各种类型的ZnO结构中,ZnO海胆是由3-D微球和1-D纳米线组成的集成结构。由ZnO海胆制成的染料敏化太阳能电池(DSSC)已显示出比平面纳米线更高的功率转换效率。这是因为ZnO海胆每单位体积的表面积要比平面纳米线阵列的表面积大。该更大的表面积允许更大量的染料进入半导体纳米线。我们已经合成了由ZnOxPy微球,磷化锌(Zn 3P2)和ZnO相混合而成的海胆结构,并封装在一系列ZnO纳米线中。这些有趣结构的合成无需借助其他研究小组在先前研究中使用的预制3-D微球模板即可实现。这种简单的合成ZnO海胆结构的新方法是通过以化学气相传输方法将Zn3P2粉末简单地添加到C(石墨)和ZnO源粉末中来完成的。 ZnO海胆的材料特性和生长机理将被表征和详细讨论。

著录项

  • 作者

    Cho, Jinhyun.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Electrical engineering.;Nanotechnology.;Materials science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号