首页> 外文学位 >Electronic and Magneto-Electronic Properties of Nanopatterned and Multilayered Graphene.
【24h】

Electronic and Magneto-Electronic Properties of Nanopatterned and Multilayered Graphene.

机译:纳米图案化和多层石墨烯的电子和磁电子性质。

获取原文
获取原文并翻译 | 示例

摘要

Various approaches to induce a band gap in graphene based structures are theoretically investigated. The band structure and the electron transport of the proposed devices are calculated using semi-empirical extended Huckel theory (EHT) coupled with the nonequilibrium Green's function (NEGF) formalism. We consider a stacked structure of two arm-chair nanoribbons and observe negative differential resistance (NDR) behavior in the simulated current-voltage (I -- V) characteristics. The magnitude of the NDR decreases with an increase of the ribbon width. A 2D nanomesh structure of graphene patterned with a periodic array of nano holes is also investigated. The results suggest that the bandgap opening is a result of quantum confinement. However obtaining a modest bandgap in graphene often comes at the expense of strongly degraded electron mobility with lithographic difficulties. Therefore, an unconventional biasing approach of modulating the I -- V characteristics without inducing any bandgap is studied. In such a scheme, NDR is observed in both single layer and bi-layer graphene field-effect transistors. The NDR is an intrinsic property of graphene resulting from its symmetric band structure.;Experimentally, multiple layers of graphene tend to be misoriented with respect to each other. The effects of magnetic field and interlayer bias on the interlayer electron transport of large misoriented bilayer graphene nanoribbons is calculated. Edge states can result in a large peak in the transmission at the charge neutrality point that is several orders of magnitude larger than the surrounding low-energy transmission. The transmission is consistently asymmetric around the charge neutrality point for all structures with the value differing by up to 3 orders of magnitude within 50 meV on either side of the charge neutrality point. The low-energy states exhibit a high magnetoconductance ratio, and the magnetoconductance ratio tends to increase as the width of the ribbons decrease. The maximum value of magnetoconductance ratio for the 35 nm wide bilayer ribbons at 10T is 15,000%. The effect of the bias on the transmission gives rise to non-linear I -- V characteristics.
机译:理论上研究了在石墨烯基结构中引起带隙的各种方法。利用半经验扩展Huckel理论(EHT)结合非平衡格林函数(NEGF)形式主义,计算了拟议器件的能带结构和电子传输。我们考虑了两个扶手椅纳米带的堆叠结构,并在模拟的电流-电压(IV)特性中观察到负微分电阻(NDR)行为。 NDR的大小随色带宽度的增加而减小。还研究了用纳米孔的周期性阵列构图的石墨烯的二维纳米网状结构。结果表明带隙开口是量子限制的结果。然而,在石墨烯中获得适度的带隙通常以严重降低电子迁移率为代价,具有光刻困难。因此,研究了一种在不引起任何带隙的情况下调节I-V特性的非常规偏置方法。在这样的方案中,在单层和双层石墨烯场效应晶体管中都观察到了NDR。 NDR是由于其对称的能带结构而产生的石墨烯的固有特性。;实验中,石墨烯的多个层往往会相互错位。计算了磁场和层间偏压对大错位双层石墨烯纳米带的层间电子传输的影响。边缘状态可能会在电荷中性点处导致传输中的大峰值,该峰值比周围的低能量传输大几个数量级。对于所有结构,传输在电荷中性点周围始终是不对称的,其值在电荷中性点两侧的50 meV内相差最多3个数量级。低能态表现出高的磁导率,并且随着带的宽度减小,磁导率趋于增加。 35 nm宽双层带在10T时的磁导率最大值为15,000%。偏置对传输的影响导致非线性I-V特性。

著录项

  • 作者

    Ahsan, Sonia.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Nanotechnology.;Engineering Electronics and Electrical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号