首页> 外文学位 >Statistical methods for the detection and space-time monitoring of dna markers in the pollen cloud.
【24h】

Statistical methods for the detection and space-time monitoring of dna markers in the pollen cloud.

机译:花粉云中dna标记的检测和时空监测的统计方法。

获取原文
获取原文并翻译 | 示例

摘要

The analysis of pollen grains finds applications in fields as diverse as allergology, paleoecology, apiculture and forensics. In contrast with morphological identification methods that require the visual inspection of individual pollen grains, recently-developed genetic approaches have the potential to increase both the scale and resolution of pollen analyses. In the first part of this dissertation, I describe efficient experimental designs to determine the prevalence of a genetic marker in an aggregate pollen sample from the results of DNA amplification by polymerase chain reaction (PCR). The method is based on the theory of limited dilution assays and takes into account potential sources of assay failure such as DNA degradation and PCR inhibition. In the following parts, I show how the genetic composition of air-sampled and bee-sampled pollen can be used to infer spatial characteristics of the floral landscape. Through individual-based simulations of the foraging behavior of honey bees, I obtain theoretical relationships between the genetic differentiation of pollen loads collected at a beehive and the spatial genetic structure of the plant populations visited by foragers. At a larger scale, I present a hierarchical Bayesian model that describes the distribution and spread of common ragweed in France by integrating annual pollen counts from aerobiological stations and presence data from field observations. As the capacity for pollen sampling and analysis increases, these models could be expanded to describe in more detail the biological and physical processes affecting pollen production and transport, and thus provide better predictions for ecological applications such as the control of invasive species.
机译:花粉粒的分析在变应学,古生态学,养蜂业和法医学等领域都有广泛的应用。与需要对单个花粉粒进行目视检查的形态学识别方法相比,最近开发的遗传方法具有增加花粉分析规模和分辨率的潜力。在本论文的第一部分中,我描述了有效的实验设计,以通过聚合酶链反应(PCR)扩增DNA的结果确定聚集花粉样品中遗传标记的普遍性。该方法基于有限稀释测定的理论,并考虑了测定失败的潜在来源,例如DNA降解和PCR抑制。在以下部分中,我将说明如何使用空气采样和蜂采样花粉的遗传成分来推断花卉景观的空间特征。通过对蜜蜂觅食行为的基于个体的模拟,我获得了在蜂箱处收集的花粉负荷的遗传分化与觅食者探访的植物种群的空间遗传结构之间的理论关系。在更大的范围内,我提出了一个贝叶斯分层模型,该模型通过整合来自航空生物学站的年度花粉计数和来自现场观测的存在数据来描述法国普通豚草的分布和扩散。随着花粉采样和分析能力的提高,可以扩展这些模型以更详细地描述影响花粉生产和运输的生物和物理过程,从而为诸如入侵物种控制等生态应用提供更好的预测。

著录项

  • 作者

    Marchand, Philippe.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Environmental Sciences.;Biology Biostatistics.;Biology Ecology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号