首页> 外文学位 >Optimal control for polymer process modeling.
【24h】

Optimal control for polymer process modeling.

机译:聚合物过程建模的最佳控制。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, we explore the application of optimization routines to systems of differential equations governing fluid flows which arise in polymer processing applications. We describe properties (called state variables) of a fluid as it flows through a domain using these systems of differential equations. Associated with these systems are initial and boundary conditions, as well as parameters that we control in order to obtain desired properties of the fluid in the flow domain. Some of these desired properties could be added strength (if the fluid is allowed to solidify), thickness, a specific temperature, reduced stagnation region, or to simply reduce waste.; There are many examples of optimization routines. The simplest optimization algorithm, the line search, is ideal for one control parameter. Examples of one-dimensional line searches are the Bisection algorithm and the Golden Section search. If multiple controls are desired, then sensitivity- and adjoint-based optimization algorithms should be considered. Adjoint-based optimization algorithms require only a single solution of a linear system regardless of the amount of control parameters, whereas sensitivity-based algorithms require one solution of a linear system for each control parameter.; The application area motivating this dissertation is polymeric fiber and film processing. Specifically, we consider three problems: the quench and draw-down phases of fiber melt spinning, flow between the die and chill roll for a cast film process, and flow inside a four-to-one contraction domain.; In the first application, we consider applying a line search to equations modeling fiber melt spinning that includes flow induced crystallization. We aim to optimize the orientation in the semi-crystalline phase of the polymer. Also considered is a simple two-parameter grid search, once again with the goal of optimizing orientation. Secondly, we use a sensitivity-based optimization algorithm to control three processing parameters, matching a desired film thickness. Finally, for flow inside a four-to-one contraction domain, we minimize the vortex that occurs in the corner by controlling the heat flux. The energy equation is coupled with the mass, momentum, and constitutive equations through the use of a temperature dependent Newtonian viscosity. Many authors assume a temperature dependent Newtonian viscosity when describing the model equations, but make the simplifying assumption of a constant Newtonian viscosity when carrying out computations; we assume no such simplification for the computations. Our analysis coupled with numerical solution of the problem with temperature-dependent viscosity distinguishes this work from earlier efforts.
机译:在本文中,我们探讨了优化程序在微分方程系统中控制聚合物加工应用中流体流动的应用。我们使用这些微分方程组来描述流体在域中流动时的特性(称为状态变量)。与这些系统相关的是初始条件和边界条件,以及我们控制的参数,以便在流域中获得所需的流体特性。这些期望的特性中的一些可以增加强度(如果允许流体固化),厚度,特定温度,减少的停滞区域或简单地减少浪费。有许多优化例程的示例。最简单的优化算法,即线搜索,非常适合一个控制参数。一维线搜索的示例有两分法和黄金分割搜索。如果需要多个控件,则应考虑基于灵敏度和伴随性的优化算法。不考虑控制参数的数量,基于伴随的优化算法仅需要线性系统的一个解,而针对每个控制参数,基于灵敏度的算法需要线性系统的一个解。促使本文发展的应用领域是聚合物纤维和薄膜加工。具体来说,我们考虑了三个问题:纤维熔体纺丝的骤冷和牵伸阶段,流延膜工艺在模具和冷却辊之间的流动以及在四比一收缩区域内的流动。在第一个应用程序中,我们考虑将线性搜索应用于包括流动诱导结晶在内的模拟纤维熔体纺丝的方程式。我们旨在优化聚合物半结晶相中的取向。还考虑了一个简单的两参数网格搜索,再次以优化方向为目标。其次,我们使用基于灵敏度的优化算法来控制三个处理参数,以匹配所需的膜厚。最后,对于四对一收缩域内的流动,我们通过控制热通量来最小化拐角处发生的涡流。通过使用温度相关的牛顿粘度,能量方程与质量,动量和本构方程耦合。许多作者在描述模型方程时都假设温度依赖于牛顿粘度,但是在进行计算时却简化了恒定牛顿粘度的假设。我们假设没有这样的简化计算。我们的分析加上对温度依赖性粘度问题的数值解决方案,使这项工作与早期工作有所不同。

著录项

  • 作者

    Szurley, David C.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号