首页> 外文学位 >Optimal utilization of disturbances for improved fatigue-mitigation and speed-regulation in flexible wind turbines.
【24h】

Optimal utilization of disturbances for improved fatigue-mitigation and speed-regulation in flexible wind turbines.

机译:扰动的最佳利用,可改善柔性风力涡轮机的疲劳缓解和速度调节。

获取原文
获取原文并翻译 | 示例

摘要

Modern wind turbines are experiencing rapid growth in both physical size and rated capacity. As designs grow larger with lighter construction materials, dampening flexible modes with active control becomes more critical for avoiding structural fatigue issues in order to extend the turbine service life. Prior to the year 2000, with few exceptions, industrial wind turbine controllers were designed using single-loop proportional-integral-derivative (PID) techniques with trial-and-error tuning of the loop gains. Structural oscillation was mitigated through stiff turbine designs and controllers were intentionally limited in response bandwidth to avoid excitation of natural frequencies. It is now known that complex wind interactions with the whole structure cause nearly all flexible modes to be excited to some extent during normal operation and flexible turbines tend to exacerbate structural fatigue issues.;This dissertation documents the first known application of the theory of disturbance utilization control (DUC) to the problem of active pitch control in large, flexible wind turbines. Controllers are designed for a mathematical model of a flexible utility-grade wind turbine operating in above-rated winds, and it is shown through simulation that positive "utility" (useful energy) exists in turbulent wind inflow. It is further demonstrated that the optimal DUC controller harnesses this energy to dampen several flexible modes leading to decreased pitch actuator demand and improved structural fatigue life, all while also regulating generator speed.;Comparing results to previously-published disturbance accommodation controllers, it is shown that DUC reduces blade damage from flapping by 22%, drive-train fatigue damage by 14%, total blade actuator motion by 63%, and results in a 60% reduction in maximum blade actuator pitch rate in turbulent environments.
机译:现代风力涡轮机的物理尺寸和额定容量都在快速增长。随着使用更轻的建筑材料来扩大设计规模,采用主动控制来衰减柔性模式对于避免结构疲劳问题以延长涡轮机使用寿命变得至关重要。在2000年之前,几乎没有例外,工业风轮机控制器是使用单回路比例积分微分(PID)技术进行设计的,并且对回路增益进行了反复试验。通过刚性涡轮机设计减轻了结构振动,并且故意限制了控制器的响应带宽,以避免激发固有频率。众所周知,复杂的风与整个结构的相互作用会导致在正常运行期间几乎所有的柔性模式都会在某种程度上被激发,而柔性涡轮机会加剧结构疲劳问题。控制(DUC)来解决大型柔性风力涡轮机中的主动变桨控制问题。控制器是为在额定风中运行的柔性公用事业级风力涡轮机的数学模型而设计的,并且通过仿真显示,湍流中存在正的“实用”(有用能量)。进一步证明,最佳DUC控制器利用这种能量来衰减几种灵活的模式,从而降低变桨执行器的需求并改善结构疲劳寿命,同时还能调节发电机转速。;与以前发布的扰动调节控制器相比,结果表明DUC可以将拍打引起的叶片损坏减少22%,将传动系统的疲劳损坏减少14%,将刀片执行机构的总运动减少63%,并在湍流环境中将最大刀片执行机构的俯仰率降低60%。

著录项

  • 作者

    Parker, Glenn Alan.;

  • 作者单位

    The University of Alabama in Huntsville.;

  • 授予单位 The University of Alabama in Huntsville.;
  • 学科 Applied Mathematics.;Engineering Mechanical.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TS97-4;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号