首页> 外文学位 >Modeling and Control of Two-Phase Flow in Direct Methanol Fuel Cells.
【24h】

Modeling and Control of Two-Phase Flow in Direct Methanol Fuel Cells.

机译:直接甲醇燃料电池中两相流的建模和控制。

获取原文
获取原文并翻译 | 示例

摘要

A direct methanol fuel cell (DMFC) involves two-phase flow on both anode and cathode sides. On the anode side, methanol-water solution is oxidized to produce carbon dioxide (CO2), whereas gaseous oxygen from air is reduced to form liquid water on the cathode side. Prediction and control of two-phase flow is of paramount importance for performance and fuel efficiency of DMFC in portable application. This dissertation aims to accurately predict and control two-phase flow in the channel and porous media of a DMFC to enable novel design and selection of components.;CO2 gas produced during methanol oxidation reaction in a DMFC is the reason for the two-phase flow in the anode. This CO2 gas is typically removed through the anode channel for steady cell operation, which makes a strong two-phase flow in the anode channel. As this channel two-phase flow causes a large pressure drop which is not desired, the present work modeled a CO2 breathing DMFC which directly vents CO 2 to the ambient through the porous surface film. Although the CO 2 breathing DMFC shows similar cell performance with the conventional DMFC, the net power throughput and the system efficiency are improved since required pumping power is reduced due to reduced anode pressure. The role of CO2 in controlling water and methanol transport in a DMFC is elucidated with a computational method for the first time. It is found that the amount of CO2 in the anode (CO2 level) determines capillary diffusion which dominates water transport in a DMFC. In addition, the multi-D DMFC model explains that methanol is transported not only by molecular diffusion but also by capillary diffusion in the anode porous media, and both transport mechanisms are strong functions of the CO2 level.;The present study predicted a significant cell performance loss due to severe non-uniform distribution of methanol concentration under ultra-low anode stoichiometry condition. After identifying the controlling parameters of the anode non-uniformity, two strategies to mitigate the anode non-uniformity and to boost cell performance as well as fuel efficiency are proposed. First, streamline-graded structures (SGS) which control methanol transfer resistance are devised and studied through a statistical analysis. Second, an interdigitated fuel distributor which converts the fuel transport mechanism from diffusive to convective is developed. It is found that cell performance and fuel efficiency are improved by mitigating fuel concentration non-uniformity due to reduced methanol crossover in the inlet region and improved fuel supply in the outlet region.
机译:直接甲醇燃料电池(DMFC)在阳极和阴极两侧都涉及两相流。在阳极侧,甲醇-水溶液被氧化生成二氧化碳(CO2),而空气中的气态氧被还原,在阴极侧形成液态水。两相流的预测和控制对于便携式应用中DMFC的性能和燃油效率至关重要。本文旨在准确预测和控制DMFC通道和多孔介质中的两相流,以实现新颖的设计和选择组件。DMFC中甲醇氧化反应过程中产生的CO2气体是两相流的原因在阳极。通常会通过阳极通道除去此CO2气体,以使电池稳定运行,从而在阳极通道中产生强大的两相流动。由于该通道的两相流会引起大的压降,这是不希望的,因此,本工作对CO2呼吸DMFC进行了建模,该DMFC通过多孔表面膜将CO 2直接排放到环境中。尽管CO 2呼吸DMFC显示出与常规DMFC相似的电池性能,但由于所需的泵送功率因阳极压力降低而降低,因此净功率输出量和系统效率得到了改善。首次通过计算方法阐明了二氧化碳在DMFC中控制水和甲醇传输的作用。发现阳极中的CO2量(CO2含量)决定了毛细血管扩散,而毛细血管扩散主导着DMFC中的水传输。此外,多D DMFC模型解释了甲醇不仅在阳极多孔介质中通过分子扩散而且通过毛细管扩散进行迁移,并且两种迁移机理均是CO2水平的强函数。在超低阳极化学计量条件下,由于甲醇浓度的严重不均匀分布,导致性能损失。在确定了阳极不均匀性的控制参数之后,提出了两种减轻阳极不均匀性并提高电池性能以及燃料效率的策略。首先,通过统计分析设计并研究了控制甲醇转移阻力的流线级结构(SGS)。其次,开发了一种指状燃料分配器,该燃料分配器将燃料传输机制从扩散转换成对流。已经发现,通过减轻由于入口区域中甲醇交换的减少和出口区域中燃料供应的改善而引起的燃料浓度不均匀性,改善了电池性能和燃料效率。

著录项

  • 作者

    Jung, Seung Hun.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号