首页> 外文学位 >Hydrophobicity, heat transfer, and momentum transfer at hard and soft aqueous interfaces.
【24h】

Hydrophobicity, heat transfer, and momentum transfer at hard and soft aqueous interfaces.

机译:硬水界面和软水界面的疏水性,热传递和动量传递。

获取原文
获取原文并翻译 | 示例

摘要

Advancements in science and technology increasingly involve systems operating at the nanoscale. Interfaces are often present in these systems. Nanoscopic interfaces are ubiquitous in biological systems, nanofluidic devices, and integrated circuits. Properties at the interface may be quite different from the bulk, and in fact a true bulk may not be present in these systems. At the nanoscale the ratio of interface to volume is large, and the interface may have the dominant role in determining system behavior. Interfacial characteristics and their connection to interfacial properties are the focus of my thesis. Using molecular simulations of model interfaces we characterize how properties like chemistry, composition, and topography affect such phenomena such as hydrophobicity, heat transfer, and momentum transport at the nanoscale. An interface is defined simply as where two materials meet and a change in some structure or order parameter is observed. In aqueous systems, the type studied here, these changes are relatively sharp and occur within a distance of nanometers. Water molecules near the interface are expected to display sensitivity to the underlying surface. Indeed, water near a hydrophobic surface is more deformable and has greater fluctuations. The hydrophobicity of chemically heterogeneous surfaces and proteins are characterized using these nanoscopic measures. We find the effect of mixing hydrophobic and hydrophobic head group chemistries is asymmetric, i.e., it is easier to make a hydrophobic surface hydrophilic than the reverse. The role of hydrogen bonding in hydrophobic and ion hydration is also characterized using a short range water model. Hydrophobic and ion hydration are reasonably captured with the short range water model. These studies show the importance of chemical composition and local hydrogen bonding in determining surface hydrophobicity. Interfaces also lead to anomalous behavior in heat and momentum transport. Interfaces disrupt local structure and create boundary resistances that manifest in temperature discontinuities and interfacial slip. We explore the effects of chemical heterogeneity, nanoscale surface roughness, and directionality on thermal conductance across model solid-water interfaces. Interfacial conductance is directly influenced by the coupling strength or wettability of the surface. For chemically mixed surfaces, interfacial conductance does not precisely match with wettability. Surface roughness in general enhances conductance, but the improvement cannot be completely attributed to increased solvent accessible surfaced area. Momentum transport displays similar discontinuities at aqueous interfaces. These effects can be reduced through the use of osmolytes. Collectively this work highlights the influence of interfaces on heat and momentum transport. Insights are provided for modifying interfacial behavior and altering the property of interest.
机译:科学技术的进步越来越多地涉及纳米级的系统。这些系统中经常存在接口。纳米接口在生物系统,纳米流体设备和集成电路中无处不在。界面上的属性可能与主体有很大不同,实际上,这些系统中可能没有真正的主体。在纳米级,界面与体积之比很大,界面可能在决定系统行为方面起主导作用。界面特征及其与界面性质的联系是本文的重点。使用模型接口的分子模拟,我们可以表征化学性质,组成和形貌等特性如何影响诸如疏水性,传热和动量传递等纳米级现象。界面被简单定义为两种材料相遇并观察到某些结构或顺序参数发生变化的位置。在水性系统中,这里研究的类型,这些变化相对较明显,并且发生在纳米距离之内。界面附近的水分子有望对下层表面显示出敏感性。实际上,疏水表面附近的水更易变形且波动更大。使用这些纳米手段可以表征化学异质表面和蛋白质的疏水性。我们发现混合疏水性和疏水性头部基团化学物质的效果是不对称的,即,使疏水性表面亲水性比反之更容易。氢键在疏水和离子水合作用中的作用还使用短程水模型进行了表征。短程水模型可以合理地捕获疏水性和离子水合作用。这些研究表明化学成分和局部氢键在确定表面疏水性方面的重要性。界面还导致热和动量传输中的异常行为。界面破坏局部结构并产生边界电阻,表现为温度不连续性和界面滑移。我们探索了化学异质性,纳米级表面粗糙度和方向性对跨模型固体-水界面的热导的影响。界面电导直接受表面的结合强度或润湿性影响。对于化学混合的表面,界面电导率与润湿性不完全匹配。通常,表面粗糙度可提高电导率,但这种改善不能完全归因于溶剂可及表面面积的增加。动量传输在水界面处显示相似的不连续性。这些影响可以通过使用渗透压降低。总的来说,这项工作突出了界面对热量和动量传递的影响。提供了用于修改界面行为和更改感兴趣属性的见解。

著录项

  • 作者

    Acharya, Hari.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Chemical engineering.;Nanotechnology.;Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号