首页> 外文学位 >Effects of climate, forest structure, soil water, & scale on biosphere-atmosphere gas exchange in a Great Lakes mixed-deciduous forest.
【24h】

Effects of climate, forest structure, soil water, & scale on biosphere-atmosphere gas exchange in a Great Lakes mixed-deciduous forest.

机译:气候,森林结构,土壤水分和规模对五大湖混合落叶林中生物圈-大气气体交换的影响。

获取原文
获取原文并翻译 | 示例

摘要

Our ability to model weather and climate at various spatial and temporal scales is highly dependent on our understanding of the ecosystem parameters that control mass and energy exchange between the biosphere and atmosphere. Over forested canopies, the physical structure of vegetation interacts with the wind by exerting drag on the flow, thus generating turbulent mixing that is necessary for scalar transport. These interactions occur across a variety of spatio-temporal scales (microscopic to global; milliseconds to decades) and their consequences are influential over an equally wide range of spatio-temporal scales. In these studies we used 12 years of flux-tower data and modeling exercises to test the sensitivity of carbon, water, and momentum transfer to climate, canopy structure heterogeneity, soil moisture heterogeneity, time, and scale within a Great Lakes Mixed-Deciduous Forest located at the University of Michigan Biological Station (UMBS).;We first described a data processing, analysis, and gap-filling package for the AmeriFlux-affiliated meteorological stations at UMBS. This data package was then utilized to test the sensitivity of carbon fluxes to climate from 2000-12. We found carbon dynamics to be significantly affected by timescale, dataset length, and within-season and antecedent environmental conditions. We found the use of an artificial neural network (ANN) to model short-term (30-60 min) carbon fluxes was superior to linear-interaction models.;We next used paired (undisturbed and disturbed) forest environments along with a large-eddy simulation (LES), long-term meteorological observations and remote sensing of forest canopy to explore the effects of canopy structure on flux-driving surface roughness parameters, d, z0, and ha. We described long-term observations of ha as a metric for mapping long-term vertical stem growth of the forest. We found observed relationships between roughness parameters and canopy structure to be highly variable. We determined LES to be a suitable method to quantitatively predict the effects of canopy-structure change. We performed a virtual experiment to test the sensitivity of roughness parameters with respect to four axes of variation in canopy structure: (1) leaf area index (LAI), (2) vertical profile of leaf area density (LAD), (3) canopy height, and (4) gap fraction. We found consistent relationships between roughness parameters and LAI and height. The incorporation of canopy-roughness relationships and seasonality to roughness parameter was shown to increase flux model accuracy.;We used RAFLES-ED2, developed and evaluated here, to explore the spatial scaling relationships of evapotranspiration as affected by soil moisture (SM) in heterogeneous environments at the tree-crown scale. We found that RAFLES-ED2 was able to model the sensitivity of biosphere-atmosphere interactions to physiological stress brought on by water-limitations. During non-limiting water conditions, we found cumulative LAI to be the primary driver of crown-scale flux dynamics, while SM began to have a significant influence during water-limiting conditions.
机译:我们在各种时空尺度上模拟天气和气候的能力高度依赖于我们对控制生物圈与大气之间质量和能量交换的生态系统参数的理解。在林冠层上,植被的物理结构通过在水流上施加阻力而与风相互作用,从而生成标量运输所必需的湍流混合。这些相互作用发生在各种时空尺度上(从微观到全球;从毫秒到数十年),其影响在相当大的时空尺度上都具有影响力。在这些研究中,我们使用了12年的流量塔数据和建模练习,以测试大湖混交林中碳,水和动量传递对气候,冠层结构异质性,土壤水分异质性,时间和规模的敏感性。 ;我们首先介绍了UMBS AmeriFlux附属气象站的数据处理,分析和填充程序包。然后,该数据包用于测试碳通量对2000-12年以来气候的敏感性。我们发现碳动力学受时间尺度,数据集长度以及季节内和先前环境条件的影响很大。我们发现使用人工神经网络(ANN)建模短期(30-60分钟)碳通量要优于线性相互作用模型。;接下来,我们使用成对(不受干扰和受干扰)森林环境以及大型森林涡模拟(LES),长期气象观测和森林冠层遥感,以探索冠层结构对通量驱动表面粗糙度参数d,z0和ha的影响。我们将对ha的长期观察描述为绘制森林长期垂直茎生长的度量标准。我们发现,粗糙度参数和冠层结构之间的关系变化很大。我们确定LES是定量预测冠层结构变化影响的合适方法。我们进行了一个虚拟实验来测试相对于冠层结构变化的四个轴的粗糙度参数的敏感性:(1)叶面积指数(LAI),(2)叶面积密度(LAD)的垂直剖面,(3)林冠高度,以及(4)间隙分数。我们发现粗糙度参数与LAI和高度之间具有一致的关系。将冠层-粗糙度关系和季节性与粗糙度参数结合使用可提高通量模型的准确性。;我们在这里开发和评估了RAFLES-ED2,以探讨不同土壤水分(SM)对蒸散量的空间比例关系。树冠规模的环境。我们发现,RAFLES-ED2能够模拟生物圈-大气相互作用对水​​分限制所带来的生理压力的敏感性。在非限制性水条件下,我们发现累积的LAI是树冠尺度通量动力学的主要驱动力,而SM在水限制条件下开始产生重大影响。

著录项

  • 作者

    Maurer, Kyle D.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Environmental engineering.;Forestry.;Biogeochemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:42:15

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号