首页> 外文学位 >Analytical and Numerical Modeling of Assembly Procedures of Steel Fulcra of Bascule Bridges.
【24h】

Analytical and Numerical Modeling of Assembly Procedures of Steel Fulcra of Bascule Bridges.

机译:悬索桥钢胎颈组装程序的分析和数值建模。

获取原文
获取原文并翻译 | 示例

摘要

To model shrink-fitting in metal components, an analytical model for two long compound cylinders with temperature dependent material properties and interference between them is developed for calculating transient temperatures and stresses. A finite element model is developed for the same geometry which incorporated the temperature dependent material properties. A convergence study is performed on the finite element and analytical model. The finite element model is validated by comparing the approximations of finite element model with the analytical solution.;In an assembly procedure of fulcrums for bascule bridges, called AP1, the trunnion is shrink-fitted into a hub, followed by shrink fitting the trunnion-hub assembly into the girder of the bridge. In another assembly procedure called AP2, the hub is shrink-fitted into the girder, followed by shrink-fitting the trunnion in the hub-girder assembly. A formal design of experiments (DOE) study is conducted on both AP1 and AP2 using the finite element model to find the influence of geometrical parameters such as radial thickness of the hub, radial interference, and various shrink-fitting methods on the design parameter of overall minimum critical crack length (OMCCL)---a measure of likelihood of failure by cracking. Using the results of DOE study conducted on both the assembly procedures, AP1 and AP2 are quantitatively compared for the likelihood of fracture during assembly.;For single-staged shrink-fitting methods, for high and low hub radial thickness to hub inner diameter ratio, assembly procedure AP1 and AP2 are recommended, respectively. For fulcra with low hub radial thickness to hub inner diameter ratio and where staged shrink-fitting methods are used, for AP2, cooling the trunnion in dry-ice/alcohol and heating the girder, and for AP1, cooling the trunnion-hub assembly in dry-ice/alcohol followed by immersion in liquid nitrogen is recommended. For fulcra with high hub radial thickness to hub inner diameter ratio and where staged shrink-fitting methods are used, cooling the components in dry-ice/alcohol and heating the girder is recommended for both AP1 and AP2.;Due to the limitations of AP2, assembly procedures by heating the girder with heating coils instead of dipping an already stressed trunnion-hub assembly in liquid nitrogen are studied for decreasing the likelihood of failure by cracking and yielding. In an assembly procedure called AP3-A, only the girder is heated to shrink-fit the trunnion-hub assembly in the girder. This assembly procedure AP3-A is found to be infeasible because the girder fails by yielding if heating is expected to be completed in a reasonable amount of time. An alternative assembly procedure called AP3-B is suggested for shrink-fitting where the heating of the girder is combined with cooling the trunnion-hub assembly in dry-ice/alcohol mixture. This assembly procedure AP3-B is found to be feasible. A complete DOE study is conducted on AP3-B to find the influence of parameters like hub radial thickness and radial interference at trunnion-hub interface on the design parameter of overall minimum critical crack length. The design parameter, OMCCL values during the assembly procedure AP3-B are quantitatively compared with the widely used assembly procedures (AP1 single-stage shrink-fitting and AP1 multi-staged shrink fitting). The results of this work suggest that increasing the hub radial thickness decreases the likelihood of fracture significantly. For hubs with large radial thickness, heating the girder combined with cooling the trunnion-hub in dry-ice/alcohol mixture (AP3-B) is recommended but for hubs with low radial thickness, multistage cooling of the trunnion-hub assembly in dry-ice/alcohol mixture followed by dipping in liquid nitrogen (AP1- multistage cooling) is recommended.
机译:为了对金属零件的热装模型进行建模,建立了两个长复合圆柱体的分析模型,这些圆柱体具有随温度变化的材料特性以及它们之间的干扰,以计算瞬态温度和应力。针对包含了随温度变化的材料特性的相同几何形状,开发了有限元模型。对有限元和解析模型进行了收敛研究。通过将有限元模型的近似值与解析解进行比较来验证有限元模型。在桥墩支点的组装过程(称为AP1)中,将耳轴热缩配合到轮毂中,然后对耳轴进行热缩配合-轮毂组装到桥的大梁中。在另一个称为AP2的组装过程中,将轮毂收缩装配到大梁中,然后将耳轴热缩装配到轮毂大梁中。使用有限元模型对AP1和AP2进行了正式的实验设计(DOE)研究,以发现几何参数的影响,例如轮毂的径向厚度,径向干涉以及各种收缩拟合方法对AP1的设计参数的影响。整体最小临界裂纹长度(OMCCL)---裂纹破坏可能性的度量。使用在组装过程中进行的DOE研究结果,定量比较AP1和AP2在组装过程中破裂的可能性。对于单级热缩配合方法,高和低轮毂径向厚度与轮毂内径之比,建议分别使用组装程序AP1和AP2。对于轮毂径向厚度与轮毂内径比低的fulcra,并且采用分阶段的收缩配合方法,对于AP2,在干冰/酒精中冷却耳轴并加热大梁,对于AP1,在AP1中,冷却耳轴-轮毂组件。建议使用干冰/酒精,然后浸入液氮中。对于具有高轮毂径向厚度与轮毂内径比的fulcra,并且使用分阶段的热压配合方法,建议对AP1和AP2冷却干冰/酒精中的成分并加热大梁;由于AP2的局限性为了减少由于破裂和屈服而导致失效的可能性,研究了通过用加热线圈加热大梁而不是将已经受压的耳轴-轮毂组件浸入液氮中的组装程序。在称为AP3-A的组装过程中,仅加热大梁以将耳轴-轮毂组件收缩配合到大梁中。发现该组装过程AP3-A是不可行的,因为如果预期在合理的时间内完成加热,则梁会因屈服而失效。建议使用另一种称为AP3-B的组装程序进行热压配合,其中将大梁的加热与冷却干冰/酒精混合物中的耳轴-轮毂组件相结合。发现该组装程序AP3-B是可行的。在AP3-B上进行了一次完整的DOE研究,以发现诸如轮毂径向厚度和耳轴-轮毂界面处的径向干涉之类的参数对整体最小临界裂纹长度的设计参数的影响。将组装过程AP3-B中的设计参数OMCCL值与广泛使用的组装过程(AP1单阶段热缩配合和AP1多阶段热缩配合)进行定量比较。这项工作的结果表明,增加轮毂径向厚度会大大降低断裂的可能性。对于具有较大径向厚度的轮毂,建议将梁加热并结合在干冰/酒精混合物(AP3-B)中冷却耳轴轮毂,但对于具有较小径向厚度的轮毂,建议在干式发动机中对耳轴轮毂组件进行多级冷却。建议先加入冰/酒精混合物,然后再浸入液氮中(AP1-多级冷却)。

著录项

  • 作者

    Garapati, Sri Harsha.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Mechanical engineering.;Mechanics.;Materials science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:42:14

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号