首页> 外文学位 >Computational fluid dynamic modeling of chemically reacting gas-particle flows.
【24h】

Computational fluid dynamic modeling of chemically reacting gas-particle flows.

机译:化学反应气体颗粒流的计算流体动力学建模。

获取原文
获取原文并翻译 | 示例

摘要

Computational fluid dynamic modeling was performed to describe and analyze the various processes occurring in three chemically reacting gas-particle flows: chemical vapor synthesis of tungsten carbide and aluminum nanopowders, flame synthesis of silica nanopowder, and a novel flash ironmaking process based on the direct gaseous reduction of iron oxide concentrate particles.;The model solves the three-dimensional turbulent governing equations of overall continuity, momentum, energy, and species transport including gas-phase chemical kinetics. For modeling nanopowder synthesis, the particle size distribution is obtained by solving the population balance model. The particle nucleation rate is calculated based on chemical kinetics or homogeneous nucleation theory. The particle growth rate is calculated by vapor condensation, Brownian coagulation or a combination of both, depending on the type of material. The quadrature method of moments is used to numerically solve the population balance. For modeling the flash ironmaking reactor, a simplified chemical reaction mechanism for hydrogen-oxygen combustion is used to calculate realistic flame temperatures. The iron oxide concentrate particles are treated from a Lagrangian viewpoint.;First, the chemical vapor synthesis of tungsten carbide nanopowder was simulated. Using available experimental data, a parametric study was conducted to determine the nucleation and growth rate constants. Second, the flame synthesis of silica nanopowder was simulated. A single value of the collision efficiency factor was sufficient to reproduce the magnitude as well as the variations of the average particle diameter with different experimental conditions. Third, the chemical vapor synthesis of aluminum nanopowder was simulated. Comparison of model predictions with the available experimental data showed good agreement under different operating conditions without the need of adjustable parameters.;For modeling the flash ironmaking reactor, experiments reported in the literature for a nonpremixed hydrogen jet flame were simulated for validation. Model predictions showed good agreement with gas temperature and species concentrations measurements. The model was used to design a nonpremixed hydrogen-oxygen burner. The distributions of velocity, temperature, and species concentrations, and the trajectories of iron oxide concentrate particles in a lab flash reactor were computed and analyzed.
机译:进行了计算流体动力学建模,以描述和分析发生在三种化学反应气体颗粒流中的各种过程:碳化钨和铝纳米粉的化学气相合成,二氧化硅纳米粉的火焰合成以及基于直接气态的新型闪蒸制铁工艺该模型求解了总连续性,动量,能量和物质传输(包括气相化学动力学)的三维湍流控制方程。对于纳米粉合成的建模,可通过求解种群平衡模型获得粒径分布。基于化学动力学或均相成核理论计算颗粒成核速率。取决于材料的类型,可通过蒸汽冷凝,布朗凝聚或两者的结合来计算颗粒的生长速率。矩的正交方法用于数值求解总体平衡。为了对闪速炼铁反应器进行建模,使用简化的氢氧燃烧化学反应机理来计算实际火焰温度。从拉格朗日角度对氧化铁精矿颗粒进行了处理。首先,模拟了碳化钨纳米粉的化学气相合成。使用可用的实验数据,进行了参数研究,以确定成核和生长速率常数。其次,模拟了二氧化硅纳米粉的火焰合成。碰撞效率因子的单个值足以再现大小以及平均粒径在不同实验条件下的变化。第三,模拟了铝纳米粉的化学气相合成。模型预测与可用的实验数据的比较表明,在不同的操作条件下无需调整参数即可达到良好的一致性。为了模拟闪速炼铁反应器,对文献中报道的非预混合氢射流火焰的实验进行了仿真以进行验证。模型预测表明与气体温度和物质浓度的测量结果吻合良好。该模型用于设计非预混合氢氧燃烧器。计算并分析了实验室闪速反应器中速度,温度和物质浓度的分布以及氧化铁精矿颗粒的轨迹。

著录项

  • 作者

    Olivas-Martinez, Miguel.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号