首页> 外文学位 >Studies of current-perpendicular-to-plane magnetoresistance (CPP-MR) and current-induced magnetization switching (CIMS).
【24h】

Studies of current-perpendicular-to-plane magnetoresistance (CPP-MR) and current-induced magnetization switching (CIMS).

机译:研究电流垂直于平面的磁阻(CPP-MR)和电流感应的磁化开关(CIMS)。

获取原文
获取原文并翻译 | 示例

摘要

We present two CPP-MR studies of spin-valves based upon ferromagnetic/nonmagnetic/ferromagnetic (F/N/F) trilayers.; We measure the spin-diffusion lengths of N = Pd, Pt, and Au at 4.2K, and both the specific resistances (sample area A times resistance R) and spin-memory-loss of N/Cu interfaces. Pd, Pt and Au are of special device interest because they give perpendicular anisotropy when sandwiching very thin Co layers. Comparing our spin-memory-loss data at Pd/Cu and Pt/Cu interfaces with older data for Nb/Cu and W/Cu gives insight into the importance of spin-orbit coupling in producing such loss.; We reproduce and extend prior studies by Eid of 'magnetic activity' at the interface of Co and N-metals (or combinations of N-metals), when the other side of the N-metal contacts a superconductor (S). Our data suggest that magnetic activity may require strong spin-flipping at the N/S interface.; We present five studies of a new phenomenon, CIMS, in F1/N/F2 trilayers, with F1 a thick 'polarizing' layer and F2 a thin 'switching' layer.; In all prior studies of CIMS, positive current caused the magnetization of F2 to switch from parallel (P) to anti-parallel (AP) to that of F1- 'normal' switching. By judicious addition of impurities to F-metals, we are able to controllably produce both 'normal' and 'inverse' switching- where positive current switches the magnetization of F2 from AP to P to that of F1. In the samples studied, whether the switching is normal or inverse is set by the 'net polarization' produced by F1 and is independent of the properties of F2. As scattering in the bulk of F1 and F2 is essential to producing our results, these results cannot be described by ballistic models, which allow scattering only at interfaces.; Most CIMS experiments use Cu as the N-layer due to its low resistivity and long spin-diffusion length. We show that Ag and Au have low enough resistivities and long enough spin-diffusion lengths to be useful alternatives to Cu for some devices.; While most technical applications of CIMS require low switching currents, some, like read-heads, require high switching currents. We show that use of a synthetic antiferromagnet can increase the switching current.; Manschot et al. recently predicted that the positive critical current for switching from P to AP could be reduced by up to a factor of five by using asymmetric current leads. In magnetically uncoupled samples, we find that highly asymmetric current leads do not significantly reduce the switching current.; A CIMS equation given by Katine et al. predicts that lowering the demagnetization field should reduce the switching current. To test this prediction, we compare switching currents for Co/Au/Co(t)/Au nanopillars with t = 1 to 4 nm (where the easy axis should be normal to the layer planes at least for t = 1 and 2 nm) with those for Co/Cu/Co(t)/Au nanopillars (where the easy axis should be in the layer planes). We do not find significant differences in switching currents for the two systems.
机译:我们目前基于铁磁/非磁/铁磁(F / N / F)三层对自旋阀进行两项CPP-MR研究。我们在4.2K时测量N = Pd,Pt和Au的自旋扩散长度,以及N / Cu界面的比电阻(样品面积A乘以电阻R)和自旋存储器损耗。 Pd,Pt和Au具有特殊的器件吸引力,因为它们在将非常薄的Co层夹在中间时会产生垂直各向异性。将我们在Pd / Cu和Pt / Cu界面处的自旋存储器损耗数据与Nb / Cu和W / Cu的较旧数据进行比较,可以洞悉自旋轨道耦合在产生此类损耗中的重要性。当N-金属的另一面与超导体(S)接触时,我们通过Eid对Co和N-金属(或N-金属的组合)界面上的“磁活动”进行复制和扩展以前的研究。我们的数据表明,磁性活动可能需要在N / S界面处进行强烈的自旋翻转。我们对F1 / N / F2三层中的一种新现象CIMS进行了五项研究,其中F1是厚的“极化”层,F2是薄的“转换”层。在CIMS的所有现有研究中,正电流导致F2的磁化强度从并联(P)切换为反并联(AP),变为F1-“正常”切换。通过明智地将杂质添加到F-金属中,我们能够可控地产生“正向”和“反向”开关,其中正电流将F2的磁化强度从AP转换为P的磁化强度。在所研究的样本中,切换是正常切换还是反向切换取决于F1产生的“净极化”,并且与F2的特性无关。由于大部分F1和F2的散射对于产生我们的结果至关重要,因此这些结果不能用弹道模型来描述,后者只能在界面处散射。大多数CIMS实验将Cu用作N层,因为其电阻率低且自旋扩散长度长。我们表明,Ag和Au具有足够低的电阻率和足够长的自旋扩散长度,可以用作某些器件的Cu替代品。尽管CIMS的大多数技术应用需要低开关电流,但某些应用(如读取头)需要高开关电流。我们证明了使用合成反铁磁体可以增加开关电流。 Manschot等。最近预测,通过使用非对称电流引线,从P切换到AP的正临界电流可降低多达五分之一。在无磁耦合的样本中,我们发现高度不对称的电流引线并不会显着降低开关电流。由Katine等人给出的CIMS方程。可以预见,降低退磁磁场会降低开关电流。为了测试此预测,我们比较了t = 1-4 nm(其中易轴至少在t = 1和2 nm时垂直于层平面)的Co / Au / Co(t)/ Au纳米柱的开关电流。以及用于Co / Cu / Co(t)/ Au纳米柱的材料(易轴应在层平面中)。我们没有发现这两个系统的开关电流有显着差异。

著录项

  • 作者

    Kurt, Huseyin.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号