首页> 外文学位 >Hyperfast Correlated Dynamics of Radiation Damage and Recovery in Materials.
【24h】

Hyperfast Correlated Dynamics of Radiation Damage and Recovery in Materials.

机译:材料的辐射损伤和恢复的超快相关动力学。

获取原文
获取原文并翻译 | 示例

摘要

The response of solid-state materials to radiation is governed through a host of mechanisms that have time scales ranging from femtoseconds to seconds and years. Metastable liquid-like regions that typically last for several picoseconds and more are commonly observed in ultra-fast experiments and simulations. In this investigation, we make quantitative predictions on correlated dynamical motion of the atoms as the liquid-like state is formed and condensed following an ion or neutron impact. Simulations on three materials -- copper, silicon and argon -- that have very different bond structures reveal an anisotropic and heterogeneous dynamical structure. Of utmost importance are the dynamical correlations during the recovery period, which corresponds to the condensation of the liquid-like state.;Using molecular dynamics simulations and with the appropriate non-equilibrium shock physics formalism, the dynamical metrics of the liquid-like state are evaluated through the density correlator and van Hove self-correlation function, as well as through defect, thermodynamic and hydrodynamic field data, following a confined ion/neutron impact. These correlation functions can also be experimentally accessed or inferred from the state-of-the-art ultrafast pump-probe experimental methods. The hopping mechanism from the van-Hove self-correlation, the fractallike condensation and the fast decay of the density correlator attest to a rapid defect recovery in copper. In contrast, silicon portrays dynamically heterogeneous regions that resist recovery to the underlying lattice structure, and exhibits a non-decaying density correlator that is strikingly analogous to that of a supercooled liquid.;Ion hammering and pump-probe experiments allude to a liquid-liquid phase transition in silicon -- from a high density liquid to a low density liquid -- before silicon is amorphized; the inference, however, is based on indirect interpretations. The simulations presented in this dissertation demonstrate a transitioning to a more complex and rich dynamical structure with a fascinating directional anisotropy that is very different from that in quasi-equilibrium conditions. Thus largescale simulations, as presented in this work, would be of immense value in interpreting the results from experiments performed at ultra/hyperfast timescales.;Lastly, a fundamental understanding of the dynamical attributes of defect recovery is generally unknown; the various defect models currently in use do not account for the dynamical recovery. Insights garnered from our work can however, be advantageously employed in developing realistic models for defect recovery. Although the structural aspects of tolerance of materials to radiation have been elucidated before, the current work throws light on the incipient dynamical interactions that control the structural transformation in a radiation environment.
机译:固态材料对辐射的响应是通过一系列机制控制的,这些机制的时标范围从飞秒到秒和年。在超快速实验和模拟中通常会观察到亚稳态的类液体区域,通常持续数皮秒甚至更长。在这项研究中,我们对随着离子或中子撞击而形成并凝结的液态状态的原子的相关动力学运动进行定量预测。对具有非常不同的键结构的三种材料(铜,硅和氩)的仿真显示出各向异性且异质的动力学结构。最重要的是在恢复期间的动力学相关性,它对应于液态的凝聚。;使用分子动力学模拟和适当的非平衡冲击物理形式,可以得出液态的动力学指标。在受限的离子/中子撞击之后,通过密度相关器和van Hove自相关函数以及缺陷,热力学和流体力学场数据进行评估。这些相关函数也可以从最新的超快泵浦探针实验方法进行实验访问或推断。 van-Hove自相关的跳跃机制,分形冷凝和密度相关器的快速衰减证明了铜中缺陷的快速恢复。相比之下,硅描绘出动态的异质区域,这些区域抵抗恢复到下面的晶格结构,并表现出与衰变液体非常相似的非衰减密度相关因子。离子锤击和泵浦探针实验暗示了液-液硅非晶化之前硅中的相变-从高密度液体到低密度液体;但是,推论是基于间接解释的。本文给出的仿真结果表明,该结构过渡到具有复杂的,富有方向性的各向异性的动态结构,该各向异性与准平衡条件下的各向异性非常不同。因此,这项工作中提出的大规模仿真对于解释超/超快时间尺度上进行的实验的结果具有巨大的价值。最后,对缺陷恢复的动力学属性的基本了解通常是未知的;当前使用的各种缺陷模型不能解决动态恢复问题。但是,从我们的工作中获得的见解可以有利地用于开发用于缺陷恢复的现实模型。尽管以前已经阐明了材料对辐射的耐受性的结构方面,但是当前的工作对控制辐射环境中结构转换的初期动力学相互作用进行了阐述。

著录项

  • 作者

    Mei, Xiaojun.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Nuclear.;Engineering General.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号