首页> 外文学位 >Copper Oxide by Thermal Oxidation for Electrochemical Cells and Gas Sensors.
【24h】

Copper Oxide by Thermal Oxidation for Electrochemical Cells and Gas Sensors.

机译:用于电化学电池和气体传感器的热氧化铜氧化物。

获取原文
获取原文并翻译 | 示例

摘要

Advances in electrolytic and gas sensing technologies continue to be driven by careful selection and engineering of materials. Copper oxides---both cuprous oxide, Cu2O, and cupric oxide, CuO---are abundant, environmentally friendly, and highly versatile. An attractive feature unique to both copper oxides is the ease of synthesis through a one-step thermal oxidation of copper foil in ambient environment, yielding various oxide compositions and morphologies according to the oxidation temperature and time. There are many possible applications for the copper oxide materials, including pigments in ceramics, catalysts, sensors, solar cells, and batteries, to name a few. This work presents applications in electrochemical cells, more specifically photocatalytic water splitting and CO2 reduction, and gas sensors.;The synthesis processes of copper oxides are characterized in terms of processing parameters and inspected with X-ray diffraction measurements and scanning electron microscope (SEM). Three kinds of copper oxides were investigated for photocatalytic testing: 1 micrometer-thick, and 5 micrometer-thick Cu 2O films via 0.5 hr and 10 hr oxidation at 300 °C, respectively, and a 10 micrometer-thick Cu2O film with 8 micrometer tall vertically-aligned CuO nanowire array on top via a 2 hr oxidation at 500 °C. Under AM 1.5 illumination, photocurrents of 0.8, 1.3, and 1.7 mA/cm2, respectively, were recorded for these samples, exceeding the performance of previously reported as-synthesized, co-catalyst-free copper oxide photocathodes. Possible explanations for the observed performance based on increased minority carrier diffusion length and enhanced surface electric field are discussed. Future prospects of highly photoactive and stable copper oxide-based photocathodes are also explored. The effectiveness of surface passivation for the copper oxide photocathodes using pristine and hydrogenated TiO2 thin films are quantified through prolonged photoelectrochemical testing. Photocathodes protected with TiO2 films of 50 nm thickness deposited by atomic layer deposition exhibited excellent stability, but the photocurrent dropped to ~0.06 mA/cm2. The results of CO 2 reduction using electrochemically reduced Cu sites from copper oxide electrodes as precursors for CO2 reduction is also demonstrated. The proportion of reaction products H2, CO, HCOOH, and CH 3COOH is shown to be tunable according to the surface morphology and composition of the original oxide electrode. Therefore, these electrodes exhibit the potential for highly selective liquid fuel production, including a measured H2/CO product ratio of ~2.6 for maximized production of liquid fuels using the Fischer-Tropsch process.;A simple gas sensing architecture taking advantage of the vertically-aligned growth of CuO nanowires is demonstrated. Complete devices are formed instantly following CuO nanowire synthesis by affixing a pair of electrode pads of a second substrate on top of the nanowire array to form a complete electrical circuit. This device architecture offers simple and facile integration of nanowires into a working device. A resistance change R/R 0 of ~6 was observed for 8.1% H2 concentration increasing to ~26 for 25.5% H2 concentration. Recovery time is excellent at ~0.5 min or less. A description for the formation of facile microheater-integrated devices is outlined as a promising next step. A process flow to fabricate this device along with heat transfer analysis to predict the temperature distribution in the device is provided and the power consumption may be further minimized with a proposed pulsed heating strategy.
机译:仔细选择材料并进行工程设计,将继续推动电解和气体传感技术的发展。氧化铜-氧化亚铜Cu2O和氧化铜CuO-丰富,环保且用途广泛。两种铜氧化物均具有的一个吸引人的特征是,通过在环境中对铜箔进行一步热氧化即可轻松合成,从而根据氧化温度和时间产生各种氧化物组成和形貌。氧化铜材料有许多可能的应用,包括陶瓷中的颜料,催化剂,传感器,太阳能电池和电池等。这项工作提出了在电化学电池中的应用,更具体地说是光催化水分解和CO2还原以及气体传感器。氧化铜的合成过程通过工艺参数进行表征,并通过X射线衍射测量和扫描电子显微镜(SEM)进行了检查。 。研究了三种氧化铜用于光催化测试:分别在300°C下经过0.5 hr和10 hr氧化的1微米厚和5微米厚的Cu 2O膜,以及高8微米的10微米厚的Cu2O膜。垂直对齐的CuO纳米线阵列在500°C下经过2 hr氧化后在顶部。在AM 1.5照明下,这些样品的光电流分别记录为0.8、1.3和1.7 mA / cm2,超过了以前报道的合成,无助催化剂的氧化铜光电阴极的性能。讨论了基于增加的少数载流子扩散长度和增强的表面电场来观察性能的可能解释。高光活性和稳定的基于氧化铜的光电阴极的未来前景也得到了探索。通过长时间的光电化学测试,可以量化使用原始和氢化TiO2薄膜对氧化铜光阴极进行表面钝化的有效性。通过原子层沉积法沉积的厚度为50 nm的TiO2薄膜保护的光电阴极具有出色的稳定性,但光电流降至〜0.06 mA / cm2。还证明了使用来自氧化铜电极的电化学还原的Cu位作为CO2还原的前体来还原CO 2的结果。反应产物H2,CO,HCOOH和CH 3COOH的比例根据原始氧化物电极的表面形态和组成显示为可调的。因此,这些电极具有生产高选择性液体燃料的潜力,包括测量到的H2 / CO产物比率约为2.6,可使用费托工艺最大限度地生产液体燃料。证明了CuO纳米线的定向生长。在CuO纳米线合成之后,立即通过在纳米线阵列顶部粘贴第二个基板的一对电极焊盘以形成完整的电路,立即形成完整的器件。这种设备架构可将纳米线简单方便地集成到工作设备中。对于8.1%的H2浓度,观察到电阻变化R / R 0为〜6,而对于25.5%的H2浓度,观察到电阻变化R / R 0为〜26。恢复时间极佳,约为0.5分钟或更短。概述了形成简易的微加热器集成设备的方法,这是有希望的下一步。提供了制造该装置的工艺流程以及传热分析以预测装置中的温度分布,并且可以通过建议的脉冲加热策略进一步降低功耗。

著录项

  • 作者

    Limkrailassiri, Kevin.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 85 p.
  • 总页数 85
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号