首页> 外文学位 >Structural damage diagnostics via wave propagation-based filtering techniques.
【24h】

Structural damage diagnostics via wave propagation-based filtering techniques.

机译:通过基于波传播的滤波技术进行结构损伤诊断。

获取原文
获取原文并翻译 | 示例

摘要

Structural health monitoring (SHM) of aerospace components is a rapidly emerging field due in part to commercial and military transport vehicles remaining in operation beyond their designed life cycles. Damage detection strategies are sought that provide real-time information of the structure's integrity. One approach that has shown promise to accurately identify and quantify structural defects is based on guided ultrasonic wave (GUW) inspections, where low amplitude attenuation properties allow for long range and large specimen evaluation. One drawback to GUWs is that they exhibit a complex multi-modal response, such that each frequency corresponds to at least two excited modes, and thus intelligent signal processing is required for even the simplest of structures. In addition, GUWs are dispersive, whereby the wave velocity is a function of frequency, and the shape of the wave packet changes over the spatial domain, requiring sophisticated detection algorithms. Moreover, existing damage quantification measures are typically formulated as a comparison of the damaged to undamaged response, which has proven to be highly sensitive to changes in environment, and therefore often unreliable.;As a response to these challenges inherent to GUW inspections, this research develops techniques to locate and estimate the severity of the damage. Specifically, a phase gradient based localization algorithm is introduced to identify the defect position independent of excitation frequency and damage size. Mode separation through the filtering technique is central in isolating and extracting single mode components, such as reflected, converted, and transmitted modes that may arise from the incident wave impacting a damage. Spatially-integrated single and multiple component mode coefficients are also formulated with the intent to better characterize wave reflections and conversions and to increase the signal to noise ratios. The techniques are applied to damaged isotropic finite element plate models and experimental data obtained from Scanning Laser Doppler Vibrometry tests. Numerical and experimental parametric studies are conducted, and the current strengths and weaknesses of the proposed approaches are discussed. In particular, limitations to the damage profiling characterization are shown for low ultrasonic frequency regimes, whereas the multiple component mode conversion coefficients provide excellent noise mitigation. Multiple component estimation relies on an experimental technique developed for the estimation of Lamb wave polarization using a 1D Laser Vibrometer. Lastly, suggestions are made to apply the techniques to more structurally complex geometries.
机译:航空航天部件的结构健康监测(SHM)是一个迅速兴起的领域,部分原因是商用和军用运输工具在其设计生命周期后仍在运行。寻求能够提供结构完整性实时信息的损伤检测策略。一种方法已显示出有望准确识别和量化结构缺陷的方法是基于引导超声波(GUW)检查,其中低振幅衰减特性允许长距离和大样本评估。 GUW的一个缺点是它们表现出复杂的多模态响应,使得每个频率对应于至少两个激发模式,因此即使是最简单的结构也需要智能信号处理。另外,GUW是分散的,因此波速是频率的函数,并且波包的形状在空间范围内变化,需要复杂的检测算法。此外,现有的损害量化措施通常被公式化为对损害与未损害响应的比较,事实证明对环境变化高度敏感,因此通常不可靠。作为对GUW检查固有挑战的回应,本研究开发技术来定位和估计损坏的严重程度。具体而言,引入了基于相位梯度的定位算法,以独立于激励频率和损伤大小来识别缺陷位置。通过滤波技术进行模式分离在隔离和提取单模分量(例如反射波,转换模和透射模)中至关重要,这些反射模,转换模和透射模可能是由入射波撞击损坏引起的。为了更好地表征波反射和转换并增加信噪比,还设计了空间积分的单和多分量模系数。该技术适用于受损的各向同性有限元板模型和从扫描激光多普勒振动计测试获得的实验数据。进行了数值和实验参数研究,并讨论了所提出方法的当前优缺点。尤其是,对于低超声频率范围,显示了损伤轮廓特征的局限性,而多分量模式转换系数可提供出色的噪声缓解效果。多组分估计依赖于开发的用于使用一维激光振动计估计兰姆波偏振的实验技术。最后,提出了将这些技术应用于结构上更复杂的几何形状的建议。

著录项

  • 作者

    Ayers, James T., III.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号