首页> 外文学位 >Reducing viscous losses in microchannels using modified surfaces.
【24h】

Reducing viscous losses in microchannels using modified surfaces.

机译:使用改良的表面减少微通道中的粘性损失。

获取原文
获取原文并翻译 | 示例

摘要

With current MEMS expanding, microfluidics was developed in terms of control and distribution of fluids in the micro-devices. Microchannels are distributed between those systems to transport or contain fluids. With the devices shrunk, the nanochannels are employed. The efficiency of reducing the friction losses in nano- and microchannels using air gaps was examined. Theoretical predictions were conducted first based on Navier-Stokes equations for three simplified 1-dimensional models: slip-wall model, air-gap model, and depleted-water model. The results showed that all models are of great benefit to increasing liquid flow rate with the same pressure gradient.; Numerical simulations were conducted for the two-phase flow in microchannel with air gaps by activating both Flow and VOF modules in CFD-ACE(U)(TM). The results showed that the air gaps in the microchannels are able to increase water flow rate and/or reduce the friction losses. The parameter studies showed that the small block widths and larger periodic lengths are preferred. The optimum values of the air gap heights exist, but are much less than the theoretical result. The studies of flow directions showed that parallel flow is more effective than the transverse flow. With a slip velocity on solid surface, the flow rate can be increased much more than just having air gaps. Similar finds were concluded with the simulations that used to verify the experimental work at UCLA, which confirmed the effectiveness of the air gaps in reducing friction losses.; The particle coating methods were used to form micro-/nano-textured surfaces inside the microchannels, which are the premise of producing super-hydrophobic microchannels. With the dip coating method, only a small part at the inlet had particles coated on its surface because of the small geometry size of the channel and the large viscosity and surface tension of the slurry. With pumping or pressure driving slurry flow, the flow coating method can coat the entire surfaces. The coating showed arbitrary results with two major problems: low particle density and poor particle distribution. Three factors affect the coating results were considered: the slurry properties, the geometry and surface properties of the microchannels, and the flow in microchannels.
机译:随着当前MEMS的发展,在微设备中控制和分配流体方面已开发出微流体技术。微通道分布在那些系统之间以运输或容纳流体。随着器件的缩小,采用了纳米通道。检验了使用气隙减少纳米通道和微通道中摩擦损失的效率。首先基于Navier-Stokes方程对三个简化的一维模型进行了理论预测:滑壁模型,气隙模型和枯竭水模型。结果表明,所有模型对于在相同压力梯度下提高液体流速都具有很大的好处。通过激活CFD-ACE(U)™中的Flow和VOF模块,对带有气隙的微通道中的两相流进行了数值模拟。结果表明,微通道中的气隙能够增加水的流速和/或减少摩擦损失。参数研究表明,较小的块宽度和较大的周期长度是首选。存在气隙高度的最佳值,但远小于理论结果。流向研究表明,平行流比横向流更有效。通过在固体表面上的滑动速度,可以增加流速,而不仅仅是增加气隙。通过用于验证UCLA的实验工作的仿真得出了类似的结论,该仿真证实了气隙在减少摩擦损失方面的有效性。颗粒涂覆方法用于在微通道内部形成微/纳米纹理表面,这是生产超疏水性微通道的前提。对于浸涂法,由于通道的几何尺寸小,浆料的粘度和表面张力大,因此在入口处只有一小部分表面被颗粒覆盖。通过泵送或压力驱动泥浆流,流涂方法可以覆盖整个表面。涂层显示出任意结果,但存在两个主要问题:低颗粒密度和不良颗粒分布。考虑了影响涂覆结果的三个因素:浆料性质,微通道的几何形状和表面性质以及微通道中的流量。

著录项

  • 作者

    Liu, Xiaojun.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Engineering Mechanical.
  • 学位 D.Eng.
  • 年度 2005
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号