首页> 外文学位 >Strain partitioning and the formation of forearc slivers at oblique convergent margins: Insight from numerical modeling.
【24h】

Strain partitioning and the formation of forearc slivers at oblique convergent margins: Insight from numerical modeling.

机译:斜交汇点处的应变分配和前臂条的形成:来自数值模型的见解。

获取原文
获取原文并翻译 | 示例

摘要

Oblique relative plate motion is ubiquitous at convergent margins, often resulting in a significant component of motion parallel to the margin. Partitioning of relative plate motion can result in deformation that is accommodated as spatially distinct margin-parallel shear and margin-normal thrusting, and lead to the development and migration of crustal slivers. These slivers, bounded by thrust faults at the trench and arc-ward by a well-developed margin-parallel strike-slip fault, are observed at about half of all modern convergent boundaries. Some modestly oblique settings have developed fore-arc slivers while other margins, with higher obliquities, have failed to effectively partition plate motion into distinct zones suggesting mechanisms other than obliquity are important in partitioning. Analog modeling has shown that pure frictional wedges always partition deformation but produce sliver like motion and structures at only very high obliquities. The presence of ductile layers at depth in some analog models, however, can localize shear at much lower obliquities. In light of this, we have performed, for a wide range of obliquities, finite-element numerical simulations of convergent wedges with similar geometries and distributions in strength as layered analog models, with a basal ductile layer. For these models, we solve force-balance equations for Stokes flow using COMSOL Multiphysics in order to quantify the magnitude and style of stress. Our numerical models display a similar distribution of cross-sectional topography and surface velocity fields compared to their counter part oblique analog experiments. The numerical models also demonstrate a progressive localization of margin-parallel shear with the growth of wedge topography. All wedges with a non-zero obliquity eventually show the onset and localization of shear indicative of strike-slip deformation, which we quantify by calculating the principal horizontal stress field, as well as, the margin-normal and margin-parallel components We show that the distribution of the angle 'alpha' across the wedge, where alpha is defined as the angle between the greatest stress and the margin normal, is diagnostic of partitioning. The distribution of alpha allows us to constrain the transition between distributed shear and localized partitioning in the evolving wedges. These results suggest, in conjunction with analog models, that viscous behavior at depth, responding to increasing topography during convergence, work to localize margin-parallel shear in obliquely convergent wedges and gives a mechanism for the development of fore-arc slivers in nature at small obliquities.
机译:倾斜的相对板块运动在收敛边缘处是普遍存在的,通常会导致平行于边缘的运动分量很大。相对板块运动的划分可能导致变形,该变形被作为空间上不同的边界平行剪切和边界法向推力进行调节,并导致地壳条的发育和迁移。在所有现代收敛边界的一半左右都可以观察到这些条带,这些条带由沟槽处的逆冲断层和向弧向的,由发达的边缘平行走滑断层所界定。一些适度的倾斜设置已经形成了弧形前条,而其他边缘(具有较高的倾斜度)未能有效地将板块运动划分为不同的区域,这表明除倾斜之外其他机制也很重要。模拟模型表明,纯摩擦楔块始终会分隔变形,但仅在非常高的斜度下会产生类似运动的条子和结构。但是,在某些模拟模型中,在深度处存在韧性层,可以将剪切力集中在较低的倾斜度上。有鉴于此,我们针对大范围的倾斜度,对收敛楔形进行了有限元数值模拟,其几何形状和强度分布与具有基础延性层的分层模拟模型相似。对于这些模型,我们使用COMSOL Multiphysics解决斯托克斯流的力平衡方程,以量化应力的大小和样式。与对角线倾斜模拟实验相比,我们的数值模型显示出相似的横截面形貌和表面速度场分布。数值模型还表明,随着楔形形貌的增长,边界平行剪切的逐步定位。所有具有非零倾角的楔形最终都显示出指示走滑变形的剪切的发生和局部化,我们通过计算主水平应力场以及余量法线和余量平行分量对其进行量化。跨楔形的角度“α”的分布(其中α定义为最大应力与边界法线之间的角)可以诊断分区。 alpha的分布使我们能够约束不断变化的楔形中分布剪切和局部划分之间的过渡。这些结果与模拟模型一起表明,深度处的粘性行为,对收敛过程中不断增加的地形做出了响应,致力于在倾斜会聚的楔块中定位边界平行剪切,并为小规模自然发育的前生条提供了一种机制。斜度。

著录项

  • 作者

    Koster, Kelvin.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Geology.;Plate Tectonics.;Geophysics.
  • 学位 M.S.
  • 年度 2013
  • 页码 85 p.
  • 总页数 85
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:42:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号