首页> 外文学位 >New phenomena in non-equilibrium quantum physics.
【24h】

New phenomena in non-equilibrium quantum physics.

机译:非平衡量子物理学中的新现象。

获取原文
获取原文并翻译 | 示例

摘要

From its beginning in the early 20th century, quantum theory has become progressively more important especially due to its contributions to the development of technologies. Quantum mechanics is crucial for current technology such as semiconductors, and also holds promise for future technologies such as superconductors and quantum computing. Despite of the success of quantum theory, its applications have been mostly limited to equilibrium or static systems due to 1. lack of experimental controllability of non-equilibrium quantum systems 2. lack of theoretical frameworks to understand non-equilibrium dynamics. Consequently, physicists have not yet discovered too many interesting phenomena in non-equilibrium quantum systems from both theoretical and experimental point of view and thus, non-equilibrium quantum physics did not attract too much attentions.;The situation has recently changed due to the rapid development of experimental techniques in condensed matter as well as cold atom systems, which now enables a better control of non-equilibrium quantum systems. Motivated by this experimental progress, we constructed theoretical frameworks to study three different non-equilibrium regimes of transient dynamics, steady states and periodically drives. These frameworks provide new perspectives for dynamical quantum process, and help to discover new phenomena in these systems. In this thesis, we describe these frameworks through explicit examples and demonstrate their versatility. Some of these theoretical proposals have been realized in experiments, confirming the applicability of the theories to realistic experimental situations. These studies have led to not only the improved fundamental understanding of non-equilibrium processes in quantum systems, but also suggested entirely different venues for developing quantum technologies.
机译:从20世纪初期开始,量子理论就变得越来越重要,特别是由于其对技术发展的贡献。量子力学对于诸如半导体的当前技术至关重要,并且对于诸如超导体和量子计算之类的未来技术也具有希望。尽管量子理论取得了成功,但由于1.缺乏非平衡量子系统的实验可控性,2.缺乏理解非平衡动力学的理论框架,其应用主要限于平衡或静态系统。因此,物理学家尚未从理论和实验的角度在非平衡量子系统中发现太多有趣的现象,因此,非平衡量子物理学并没有引起太多的关注。凝聚态物质和冷原子系统中实验技术的发展,现在可以更好地控制非平衡量子系统。受此实验进展的激励,我们构建了理论框架来研究瞬态动力学,稳态和周期性驱动的三种不同的非平衡状态。这些框架为动力学量子过程提供了新的视角,并有助于发现这些系统中的新现象。在本文中,我们通过明确的示例来描述这些框架,并证明它们的多功能性。这些理论建议中的一些已在实验中实现,从而证实了该理论在实际实验环境中的适用性。这些研究不仅提高了对量子系统中非平衡过程的基本理解,而且还提出了开发量子技术的完全不同的场所。

著录项

  • 作者

    Kitagawa, Takuya.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Physics Quantum.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 216 p.
  • 总页数 216
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号