首页> 外文学位 >Optical Sensing and Trapping Based on Localized Surface Plasmons.
【24h】

Optical Sensing and Trapping Based on Localized Surface Plasmons.

机译:基于局部表面等离激元的光学传感和陷印。

获取原文
获取原文并翻译 | 示例

摘要

This project involves the study of novel plasmonic nanodevices that provide unique functionality in optical sensing, surface-enhanced Raman scattering (SERS), and optical trapping.;The first design is based on a coupling system involving double-layered metal nano-strips arrays. This system has the advantages of simple geometry and direct integration with microfluidic chips. The intense optical localization due to field coupling within the system can enhance detection sensitivity of target molecules, especially by virtue of the optical trapping of plasmonic nanoparticles. The optical resonant condition is obtained theoretically through analyzing the SPs modes. Numerical modeling based on two-dimensional (2D) finite-difference time-domain (FDTD) is consistent with the theoretical analysis and demonstrates the feasibility of using this system for optical sensing and trapping.;In the second design, a gold nano-ring structure is demonstrated to be an effective approach for plasmonic nano-optical tweezers (PNOTs) for trapping metallic nanoparticles. In our demonstration example, we have optimized a device for SERS operation at the wavelength of 785 nm. Three-dimensional (3D) FDTD techniques have been employed to calculate the optical response, and the optical force distribution have been derived using the Maxwell stress tensor (MST) method. Simulation results indicate that the nano-ring produces a maximum trapping potential well of ~32 kBT on a 20 nm gold nanoparticle. The existence of multiple potential well results in a very large active trapping volume of ~106 nm3 for the target particles. Furthermore, the trapped gold nanoparticles further lead to the formation of nano-gaps that offer a near-field enhancement of ~160 times, resulting in an achievable EF of 108 for SERS.;In the third design, we propose a concept of all-optical nano-manipulation. We show that target molecules, after being trapped, can be transferred between the trapping sites within a linear array of PNOTs. The system consists of an array of graded plasmonic nano-disks (NDs) with individual elements coded with different resonant wavelengths according to their dimensions. Thus, by switching the wavelength and rotating the polarization of the excitation source, the target nanoparticles trapped by the device can be manipulated from one ND to another. 3D FDTD simulation and MST calculation are utilized to demonstrate the operation of this idea. Our results reveal that the target experiences a trapping potential strength as high as 5000 kBT/W/microm 2, maximum optical torque of ~336 pN˙nm/W/microm2, and the total active volume may reach ~106 nm3. The potential applications in terms of optical sensing are also discussed.;In the final design, for which experimental demonstration has been conducted, we show that PNOTs are achievable with random plasmonic nano-islands. Two laser beams having wavelengths of 633 nm and 785 nm are utilized to stimulate the PNOTs and excite the Raman signals simultaneously. The PNOTs are formed by annealing of a thermal evaporated gold film. This so-called nano-island substrate (Au-NIS) has a resonant peak close to 633 nm. The target is photochemical synthesized silver nanodecadedrons (AgNDs) functionalized with 4-Mercaptobenzoic acid (4-MBA) and the resonant peak of these AgNDs is far away from 633 nm and 785 nm. As the target is trapped to the hot-spots when the PNOTs are active, the near-field intensity is enhanced significantly, which results in the emergence of SERS signals, i.e. confirming the expected outcome of SERS upon nanotrapping by the PNOTs. This process is also elucidated numerically through 3D FDTD simulation and MST calculation. Furthermore, the target can be released as the PNOTs become inactive, i.e. disappearance of the SERS signal. Therefore, this design offers not only a robust avenue for monitoring trapping events in PNOTs, but also a reproducible "trap-and-sense" platform for bio-detection. (Abstract shortened by UMI.).
机译:该项目涉及新型等离激元纳米器件的研究,这些器件在光学传感,表面增强拉曼散射(SERS)和光学陷波方面提供独特的功能。;第一个设计基于涉及双层金属纳米带阵列的耦合系统。该系统具有简单的几何形状和与微流体芯片直接集成的优点。由于系统内的场耦合而引起的强烈的光学定位可以增强目标分子的检测灵敏度,尤其是由于等离子体纳米颗粒的光学捕获。通过分析SPs模式,理论上获得了光学谐振条件。基于二维(2D)有限差分时域(FDTD)的数值建模与理论分析是一致的,并证明了将该系统用于光学传感和诱捕的可行性。在第二种设计中,金纳米环事实证明,这种结构是用于等离子体金属纳米镊子(PNOT)捕获金属纳米颗粒的有效方法。在我们的演示示例中,我们优化了用于785 nm波长SERS操作的设备。三维(3D)FDTD技术已用于计算光学响应,并且已使用麦克斯韦应力张量(MST)方法得出了光学力分布。仿真结果表明,纳米环在20 nm金纳米颗粒上产生的最大俘获势阱约为32 kBT。多个势阱的存在导致目标粒子的非常大的有源捕获体积约为106 nm3。此外,被困的金纳米颗粒还导致形成纳米间隙,从而使近场增强约160倍,从而使SERS的EF可以达到108。在第三种设计中,我们提出了一种全能概念-光学纳米操纵。我们表明,目标分子被捕获后,可以在线性阵列的PNOTs中的捕获位点之间转移。该系统由一系列梯度等离子体纳米盘(ND)组成,其中各个元素根据其尺寸编码有不同的谐振波长。因此,通过切换波长并旋转激发源的偏振,可以将被设备捕获的目标纳米颗粒从一个ND操纵到另一个ND。利用3D FDTD仿真和​​MST计算来演示此想法的操作。我们的结果表明,靶标具有高达5000 kBT / W /μm2的诱捕势强度,最大光转矩约为336 pN·nm / W /μm2,总活性体积可能达到〜106 nm3。在光学传感方面的潜在应用也进行了讨论。在最终的设计中,已经进行了实验演示,我们表明,利用随机等离激元纳米岛可以实现PNOT。利用具有633nm和785nm波长的两个激光束来激发PNOT并同时激发拉曼信号。 PNOT通过热蒸发金膜退火形成。这种所谓的纳米岛基板(Au-NIS)的共振峰接近633 nm。目标是用4-巯基苯甲酸(4-MBA)功能化的光化学合成的银纳米十面体(AgNDs),这些AgNDs的共振峰远离633 nm和785 nm。当PNOT激活时,由于目标被捕获到热点,近场强度显着增强,这导致SERS信号的出现,即通过PNOT纳米捕获证实了SERS的预期结果。还通过3D FDTD仿真和​​MST计算以数字方式阐明了此过程。此外,当PNOT变为非活动状态,即SERS信号消失时,可以释放目标。因此,该设计不仅为监视PNOT中的捕获事件提供了可靠的途径,而且为生物检测提供了可重现的“捕获和检测”平台。 (摘要由UMI缩短。)。

著录项

  • 作者

    Kang, Zhiwen.;

  • 作者单位

    The Chinese University of Hong Kong (Hong Kong).;

  • 授予单位 The Chinese University of Hong Kong (Hong Kong).;
  • 学科 Engineering Electronics and Electrical.;Engineering Chemical.;Physics Optics.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号