首页> 外文学位 >Transport of nanoparticles and reacting biomolecules in micro- and nanofluidic electrokinetic systems.
【24h】

Transport of nanoparticles and reacting biomolecules in micro- and nanofluidic electrokinetic systems.

机译:纳米和微流体电动系统中纳米颗粒和生物分子的反应运输。

获取原文
获取原文并翻译 | 示例

摘要

Micro and nanofluidic systems are ideal platforms for breakthrough bioanalytical tools. In particular, transport in nanoscale channels has been shown to be different than microscale systems because of unique coupled physics associated with wall interactions, electrokinetic surface phenomena and hydrodynamic confinement. Furthermore, understanding the effects of reaction kinetics during capillary electrophoresis is necessary for reliable bioanalytical tools with reacting species. We present experimental data and numerical simulation to elucidate the dominant physics at these lengths scales toward enabling nanofluidic bioanalytical devices. First, we present an experimental study to measure the effect channel height and ionic strength on the electrophoretic mobility of spherical nanoparticles and short single strand (ss) and double strand (ds) DNA with channel depths ranging from 20 microns to 100 nm. We find increased hydrodynamic drag in confinement, nanoparticle rotation effects for spherical analytes in sheer flows, non-uniform electro-osmotic velocity profiles, and electrostatic repulsion of thick electric double layers to be important effects on transport. Second, we present an experimental study of electrokinetic separations of short, complementary ss and dsDNA in microchannels. We find different phenomena are significant for the three different DNA lengths in the study (10nt, 20nt, and 50nt). Reaction kinetic effects are significant for the shortest length DNA, where the melting temperature is comparable to room temperature. For longer 20 and 50nt DNA, the melting temperatures are sufficiently high and reaction kinetic effects are constant. In addition, the 50 nt ssDNA contour length is greater than the persistence length and we find changes in electrophoretic mobility with ionic strength resulting from changes in conformation. Finally, we present numerical simulations of the previous study on separations of reacting DNA. Reaction kinetics can affect the equilibrium ratio of ss to dsDNA which influences transport by shifting the observed electrophoretic mobility of the dsDNA peak away from the true electrophoretic mobility. We perform parametric simulations of relevant parameters and find the initial plug width, analyte concentration and kinetic rate constants are the important parameters on the observed dsDNA peak. In addition, we use our model to determine reaction kinetic parameters (ie KD) of experimental data.
机译:微和纳米流体系统是突破性生物分析工具的理想平台。特别是,由于与壁相互作用,电动表面现象和流体动力学限制相关的独特耦合物理,纳米级通道中的传输已显示出与微米级系统不同。此外,对于具有反应物种的可靠生物分析工具,必须了解毛细管电泳期间反应动力学的影响。我们目前的实验数据和数值模拟,以阐明在这些长度尺度上的主要物理学,从而使纳米流体生物分析设备成为可能。首先,我们进行了一项实验研究,以测量通道深度和离子强度对球形纳米颗粒以及短的单链(ss)和双链(ds)DNA的电泳迁移率的影响,通道深度范围为20微米至100 nm。我们发现有限的流体动力阻力,纯粹流动中球形分析物的纳米颗粒旋转效应,不均匀的电渗速度分布以及厚的双电层的静电排斥对运输产生重要影响。其次,我们提出了在微通道中对短的,互补的ss和dsDNA进行电动分离的实验研究。我们发现在研究中的三种不同的DNA长度(10nt,20nt和50nt)中,不同的现象很重要。对于最短长度的DNA,反应动力学效应非常重要,DNA的解链温度与室温相当。对于更长的20和50nt DNA,熔解温度足够高,反应动力学效应恒定。此外,50 nt ssDNA的轮廓长度大于持久长度,我们发现电泳迁移率随构象变化而产生的离子强度发生变化。最后,我们提出了先前研究中反应性DNA分离的数值模拟。反应动力学可以影响ss与dsDNA的平衡比,从而使所观察到的dsDNA峰的电泳迁移率偏离真实的电泳迁移率,从而影响转运。我们对相关参数进行参数模拟,发现初始塞子宽度,分析物浓度和动力学速率常数是观察到的dsDNA峰的重要参数。另外,我们使用我们的模型来确定实验数据的反应动力学参数(即KD)。

著录项

  • 作者

    Wynne, Thomas Mikio.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Engineering Mechanical.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号