首页> 外文学位 >Chondroprotective supplemented injectable scaffold for nucleus pulposus tissue engineering.
【24h】

Chondroprotective supplemented injectable scaffold for nucleus pulposus tissue engineering.

机译:软骨保护补充注射支架,用于髓核组织工程。

获取原文
获取原文并翻译 | 示例

摘要

The nucleus pulposus (NP) plays an essential role in the mechanical properties of the intervertebral disc (IVD). As a result of intervertebral disc (IVD) degeneration, the nucleus pulposus (NP) is no longer able to withstand applied load leading to pain and disability. Current treatments can only alleviate associated symptoms of IVD degeneration and highly invasive surgeries do not preserve the biological function of the disc. This research employs a tissue engineering strategy to fabricate a NP scaffold as a minimally invasive means to restore biomechanical function to a degenerated disc. Firstly, a tissue-engineered injectable scaffold was prepared using different concentrations of alginate and calcium chloride and mechanically evaluated. Fabrication conditions were chosen based on structural and mechanical resemblance to the native NP. Chondroprotective supplementation, glucosamine (GCSN) and chondroitin sulfate (CS), were added to scaffolds at concentrations of 0:0 µg/mL (0:0-S), 125:100 µg/mL (125:100-S), 250:200 µg/mL (250:200-S), and 500:400 µg/mL (500:400-S), GCSN and CS, respectively. Scaffolds were used to fabricate tissue-engineered constructs through encapsulation of human nucleus pulposus cells (HNPCs). The tissue-engineered constructs were collected at days 1, 14, and 28 for biochemical and biomechanical evaluations. Confocal microscopy showed HNPC viability and rounded morphology over the 28 day period. MTT analysis resulted in significant increases in cell proliferation for each group. Collagen type II ELISA quantification and compressive moduli showed increasing trends for both 250:200-S and the 500:400-S groups on Day 28 with significantly greater compressive moduli compared to 0:0-S (control) group. Glycosaminoglycan and water content decreased for all groups. Results indicate the increased mechanical properties of the 250:200-S and the 500:400-S was due to production of a functional matrix. This study demonstrated potential for a chondroprotective supplemented injectable scaffold to restore biomechanical function of a degenerative disc through the production of a mechanically functional matrix.
机译:髓核(NP)在椎间盘(IVD)的机械性能中起重要作用。由于椎间盘(IVD)变性,髓核(NP)不再能够承受施加的载荷,从而导致疼痛和残疾。当前的治疗只能缓解IVD变性的相关症状,而高度侵入性的手术不能保持椎间盘的生物学功能。这项研究采用组织工程学策略来制造NP支架,将其作为一种微创手段来恢复退化椎间盘的生物力学功能。首先,使用不同浓度的藻酸盐和氯化钙制备组织工程注射支架并进行机械评估。根据与天然NP的结构和机械相似性选择制造条件。软骨保护补充剂,氨基葡萄糖(GCSN)和硫酸软骨素(CS)以0:0 µg / mL(0:0-S),125:100 µg / mL(125:100-S),250的浓度添加到支架中GCSN和CS分别为:200 µg / mL(250:200-S)和500:400 µg / mL(500:400-S)。支架用于通过封装人髓核细胞(HNPC)来制造组织工程化的构建体。在第1、14和28天收集组织工程构建体,以进行生化和生物力学评估。共聚焦显微镜显示在28天内HNPC的活力和圆形形态。 MTT分析导致每组细胞增殖显着增加。 II型胶原ELISA定量和压缩模量在第28天对250:200-S组和500:400-S组均显示出增加的趋势,与0:0-S(对照组)组相比,其压缩模量明显更高。所有组的糖胺聚糖和水含量均降低。结果表明250:200-S和500:400-S的机械性能提高是由于产生了功能性基质。这项研究证明了软骨保护性补充可注射支架通过产生机械功能基质来恢复变性椎间盘的生物力学功能的潜力。

著录项

  • 作者

    Foss, Berit Linnehan.;

  • 作者单位

    University of South Dakota.;

  • 授予单位 University of South Dakota.;
  • 学科 Chemistry Biochemistry.;Biophysics Biomechanics.;Engineering Biomedical.
  • 学位 M.S.
  • 年度 2013
  • 页码 73 p.
  • 总页数 73
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号