首页> 外文学位 >Sound synthesis for physics-based computer animation.
【24h】

Sound synthesis for physics-based computer animation.

机译:基于物理的计算机动画的声音合成。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, we explore the problem of synthesizing realistic soundtracks for physics-based computer animations. While the problem of producing realistic animations of physical phenomena has received much attention over the last few decades, comparatively little attention has been devoted to the problem of generating synchronized soundtracks for these simulations. Recent work on sound synthesis in the computer graphics community has largely focused on producing sound for simple, rigid-body animations. While these methods have been successful for certain scenes, the range of examples for which they produce convincing results is quite limited. In this thesis, we introduce a variety of new sound synthesis algorithms suitable for generating physics-based animation soundtracks. We demonstrate synthesis results on a variety of animated scenes for which prior methods are incapable of producing plausible sounds.;First, we introduce a new algorithm for synthesizing sound due to nonlinear vibrations in thin shell structures. Our contributions include a new thin shell-based dimensional model reduction approach for efficiently simulating thin shell vibrations. We also provide a novel data-driven model for acoustic transfer due to vibrating objects, allowing for very fast sound synthesis once object vibrations are known. We find that this sound synthesis method produces significantly more realistic results than prior rigid-body sound synthesis algorithms for a variety of familiar objects.;Next, we further address the limitations of prior sound synthesis techniques by introducing a new method for synthesizing rigid-body acceleration noise—sound produced when an object experiences rapid rigid-body acceleration. We develop an efficient impulse-based model for synthesizing sound due to arbitrary rigid-body accelerations and build a system for modeling plausible rigid-body accelerations due to contact events in a standard rigid-body dynamics solver. This allows us to efficiently recover acceleration sound using data readily available from rigid-body simulations. Our results demonstrate that our method significantly improves upon the results available when using traditional rigid-body sound synthesis with no acceleration noise modeling. We also introduce a scalable proxy model which provides us with a practical method for synthesizing acceleration sound from scenes with hundreds to thousands of unique objects. This allows us to produce substantially improved sound results for phenomena such as rigid-body fracture.;Finally, we also consider sound from other, non-rigid phenomena; specifically, sound from physics-based animations of fire. We propose a hybrid sound synthesis algorithm combining physics-based and data-driven approaches. Our method produces plausible results for a variety of fire animations. Moreover, our use of data-driven synthesis grants users of our method a degree of artistic control.
机译:在本文中,我们探讨了为基于物理的计算机动画合成逼真的音轨的问题。在过去的几十年中,虽然制作物理现象的逼真的动画的问题受到了很多关注,但针对这些模拟生成同步音轨的问题却很少受到关注。计算机图形社区中有关声音合成的最新工作主要集中在为简单的刚体动画生成声音。尽管这些方法已在某些场景中获得成功,但它们产生令人信服的结果的示例范围非常有限。在本文中,我们介绍了适用于生成基于物理的动画音轨的各种新的声音合成算法。我们在各种动画场景上演示了合成结果,这些场景无法使用现有的方法来产生合理的声音。首先,我们介绍了一种用于合成薄壳结构中非线性振动引起的声音的新算法。我们的贡献包括一种新的基于薄壳的降维模型,可有效模拟薄壳的振动。我们还提供了一种新的数据驱动模型,用于振动物体引起的声音传递,一旦知道物体振动,就可以非常快速地合成声音。我们发现,对于各种熟悉的物体,这种声音合成方法比现有的刚体声音合成算法所产生的效果要明显得多。接下来,我们通过引入一种用于合成刚体的新方法,进一步解决了现有声音合成技术的局限性加速噪声-物体经历快速刚体加速度时产生的声音。我们开发了一种有效的基于冲激的模型,用于合成任意刚体加速度产生的声音,并构建了一个系统,用于对标准刚体动力学求解器中由于接触事件而引起的合理的刚体加速度进行建模。这使我们能够使用刚体仿真中容易获得的数据有效地恢复加速声音。我们的结果表明,当使用传统的刚体声音合成而没有加速噪声建模时,我们的方法大大改善了可用的结果。我们还引入了可伸缩的代理模型,该模型为我们提供了一种实用的方法,可以从具有数百到数千个唯一对象的场景中合成加速声音。这使我们能够为诸如刚体破裂之类的现象产生明显改善的声音结果。最后,我们还考虑来自其他非刚性现象的声音;具体来说,是基于物理的火动画的声音。我们提出了一种混合的声音合成算法,结合了基于物理和数据驱动的方法。我们的方法为各种火灾动画产生了合理的结果。此外,我们对数据驱动的合成的使用使我们方法的用户获得了一定程度的艺术控制。

著录项

  • 作者

    Chadwick, Jeffrey.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Mathematics.;Computer Science.;Physics Acoustics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号