首页> 外文学位 >As-Grown Gallium Nitride Nanowire Electromechanical Resonators.
【24h】

As-Grown Gallium Nitride Nanowire Electromechanical Resonators.

机译:生长的氮化镓纳米线机电谐振器。

获取原文
获取原文并翻译 | 示例

摘要

Technological development in recent years has led to a ubiquity of micro- and nano-scale electromechanical devices. Sensors for monitoring temperature, pressure, mass, etc., are now found in nearly all electronic devices at both the industrial and consumer levels. As has been true for integrated circuit electronics, these electromechanical devices have continued to be scaled down in size. For many nanometer-scale structures with large surface-to-volume ratio, dissipation (energy loss) becomes prohibitively large causing a decreasing sensitivity with decreasing sensor size.;In this work, gallium nitride (GaN) nanowires are investigated as singly-clamped (cantilever) mechanical resonators with typical mechanical quality factors, Q (equal to the ratio of resonance frequency to peak full-width-at-half-maximum-power) and resonance frequencies, respectively, at or above 30,000, and near 1 MHz. These Q values—in vacuum at room temperature—indicate very low levels of dissipation; they are essentially the same as those for bulk quartz crystal resonators that form the basis of simple clocks and mass sensors. The GaN nanowires have lengths and diameters, respectively, of approximately 15 micrometers and hundreds of nanometers. As-grown GaN nanowire Q values are larger than other similarly-sized, bottom-up, cantilever resonators and this property makes them very attractive for use as resonant sensors.;We demonstrate the capability of detecting sub-monolayer levels of atomic layer deposited (ALD) films, and the robust nature of the GaN nanowires structure that allows for their 'reuse' after removal of such layers. In addition to electron microscope-based measurement techniques, we demonstrate the successful capacitive detection of a single nanowire using microwave homodyne reflectometry. This technique is then extended to allow for simultaneous measurements of large ensembles of GaN nanowires on a single sample, providing statistical information about the distribution of individual nanowire properties. We observe nanowire-to-nanowire variations in the temperature dependence of GaN nanowire resonance frequency and in the observed mechanical dissipation. We also use this ensemble measurement technique to demonstrate unique, very low-loss resonance behavior at low temperatures. The low dissipation (and corresponding large Q values) observed in as-grown GaN nanowires also provides a unique opportunity for studying fundamental energy loss mechanisms in nano-scale objects. With estimated mass sensitivities on the level of zeptograms (10−21 g) in a one second averaging time, GaN nanowires may be a significant addition to the field of resonant sensors and worthy of future research and device integration.
机译:近年来的技术发展导致了微米级和纳米级机电设备的普及。现在,几乎在工业和消费者级别的所有电子设备中都可以找到用于监视温度,压力,质量等的传感器。正如集成电路电子学的情况一样,这些机电设备的尺寸仍在继续缩小。对于许多具有大的表面体积比的纳米级结构,耗散(能量损耗)变得过大,导致灵敏度随着传感器尺寸的减小而降低。;在这项工作中,氮化镓(GaN)纳米线被单钳位研究(具有典型机械品质因数Q(等于谐振频率与半峰最大全宽峰值功率的比)和谐振频率的悬臂式机械谐振器,分别等于或高于30,000,并且接近1 MHz。这些Q值-在室温下处于真空状态-表示非常低的耗散水平。它们与构成简单时钟和质量传感器基础的大块石英晶体谐振器基本相同。 GaN纳米线的长度和直径分别为大约15微米和数百纳米。生长中的GaN纳米线的Q值大于其他类似尺寸,自底向上的悬臂谐振器,并且此特性使其非常适合用作谐振传感器。;我们证明了检测原子层的亚单层水平的能力( ALD)膜,以及GaN纳米线结构的坚固特性,可在去除此类层后对其进行“再利用”。除了基于电子显微镜的测量技术外,我们还演示了使用微波零差反射法成功地电容检测单个纳米线的方法。然后扩展该技术,以允许在单个样品上同时测量GaN纳米线的大集合,从而提供有关单个纳米线特性分布的统计信息。我们在GaN纳米线共振频率的温度依赖性和所观察到的机械耗散中观察到纳米线到纳米线的变化。我们还使用这种整体测量技术来证明在低温下独特的,极低损耗的共振行为。在生长的GaN纳米线中观察到的低耗散(以及相应的大Q值)也为研究纳米级物体的基本能量损失机理提供了独特的机会。以一秒钟的平均时间估算出的Zeptograms(10-21 g)水平上的质量敏感性,GaN纳米线可能是共振传感器领域的重要补充,值得未来的研究和器件集成。

著录项

  • 作者

    Montague, Joshua R.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Electronics and Electrical.;Nanotechnology.;Physics General.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号