首页> 外文学位 >Mathematical Modeling and Analysis of Cellular Clocks.
【24h】

Mathematical Modeling and Analysis of Cellular Clocks.

机译:细胞时钟的数学建模和分析。

获取原文
获取原文并翻译 | 示例

摘要

Cells generate various biological rhythms that control important aspects of cell physiology including circadian (daily) events, cell division, embryogenesis, DNA damage repair and metabolism. Since these cellular rhythms can determine the fitness or fate of organisms, how cells generate and control rhythms has become a central problem in biology. In this dissertation, we have developed theorems and mathematical models to understand how complex biochemical interactions of many genes and proteins generate and control biological rhythms over a wide range of conditions.;In chapter 2, we have developed a mathematical theory that can infer biochemical interaction network of cellular clocks from timecourse data of gene and protein expression, which are relatively easy to be measured with the recent advances in experimental technology. We formulated this question as an existence and uniqueness problem and proved that the biochemical interaction network, and even biochemical rates, can sometimes uniquely be determined from only gene and protein timecourses. This theory provides a simple algorithm to determine whether two given species have a biochemical interaction. In chapter 3, we have found how cells generate rhythms with a constant period over a wide range of environmental conditions by studying circadian rhythms whose 24hr period is tightly regulated. By developing the most detailed and accurate mathematical model of circadian clock to date, we found that balancing a 1-1 stoichiometry between activators and repressors via double negative feedback loops is a key mechanism that tightly regulates the period of circadian rhythms.;This mechanism provides an explanation for why various types of circadian disorders fail to regulate rhythms. In chapter 4, we considered rhythms of p53, one of the most important tumor suppressors. Unlike self-sustained circadian rhythms, p53 rhythms only occur in response to external stimuli such as DNA damage. Sustaining p53 rhythms is essential for p53 to repair DNA damage. By developing a mathematical model of p53 rhythms, we found that additional positive feedback loops via Rora and Cyt-c can significantly improve the sustainability of p53 rhythms in the presence of genetic heterogeneity and stochasticity.
机译:细胞会产生各种生物节律,这些节律控制着细胞生理学的重要方面,包括昼夜节律事件,细胞分裂,胚胎发生,DNA损伤修复和新陈代谢。由于这些细胞节律可以决定生物体的健康或命运,因此细胞如何产生和控制节律已成为生物学的中心问题。在本文中,我们建立了定理和数学模型,以了解许多基因和蛋白质的复杂生化相互作用如何在广泛的条件下产生和控制生物节律。在第二章中,我们开发了可以推断生化相互作用的数学理论。从基因和蛋白质表达的时程数据中获得的细胞时钟网络,随着实验技术的最新发展,相对容易测量。我们将该问题表述为一个存在性和唯一性问题,并证明有时仅根据基因和蛋白质的时程可以唯一确定生化相互作用网络,甚至生化速率。该理论提供了一种简单的算法来确定两个给定的物种是否具有生化相互作用。在第3章中,我们通过研究24小时周期受到严格调节的昼夜节律,发现了细胞在广泛的环境条件下如何以恒定的周期产生节律。通过开发迄今为止最详细,最准确的生物钟时钟数学模型,我们发现通过双重负反馈回路在激活剂和阻遏物之间平衡1-1化学计量是紧密调节生物钟节律周期的关键机制。解释为什么各种类型的昼夜节律障碍无法调节节律。在第4章中,我们考虑了p53的节律,p53是最重要的肿瘤抑制因子之一。与自我维持的昼夜节律不同,p53律仅在对外部刺激(例如DNA损伤)的反应中发生。维持p53的节奏对于p53修复DNA损伤至关重要。通过建立p53节律的数学模型,我们发现在存在遗传异质性和随机性的情况下,通过Rora和Cyt-c产生的其他正反馈回路可以显着提高p53节律的可持续性。

著录项

  • 作者

    Kim, Jae Kyoung.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Applied Mathematics.;Biophysics General.;Biology Systematic.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号