首页> 外文学位 >Low power, robust, and high performance circuit design in nano-scale CMOS.
【24h】

Low power, robust, and high performance circuit design in nano-scale CMOS.

机译:纳米级CMOS中的低功耗,坚固耐用和高性能电路设计。

获取原文
获取原文并翻译 | 示例

摘要

As the CMOS technology continues to scale down, power dissipation and robustness to leakage and process variations are becoming major obstacles for circuit design in the nano-scale regime. Due to increased density of transistors in a die and higher frequencies of operation, the power consumption is reaching cooling capacity limits. On the other hand, due to increased leakage and process variations, the predictability and therefore the design yield is threatened. In this research, we address theses issues mostly at the circuit level of abstraction. For the power issue, we focus on the clock power because in current high-performance microprocessors significant fraction of the total chip power is dissipated on clock networks. In this regard, we have proposed novel energy recovery flip-flops that enable energy recovery from the clock network, resulting in significant energy savings. For the leakage tolerance issues, a leakage-tolerant design technique for high fan-in dynamic logic circuits is presented that exhibits considerable improvement in leakage immunity as compared to the standard domino circuits. To address the emerging issues of process variations, we have developed yield estimation and enhancement techniques, particularly for SRAM caches. The developed yield models are used for proposing a statistical design approach for designing SRAM arrays in nanoscale regimes. Finally, novel circuit design techniques for low power and high performance using non-classical CMOS devices such as double-gate MOSFETs are developed. Particularly, independent gate operation of double-gate transistors is exploited for reducing power and/or improving performance.
机译:随着CMOS技术的不断缩小,功耗以及对泄漏和工艺变化的鲁棒性正成为纳米级方案中电路设计的主要障碍。由于管芯中晶体管密度的增加和更高的工作频率,功耗已达到冷却能力极限。另一方面,由于增加的泄漏和工艺变化,可预测性以及因此设计成品率受到威胁。在这项研究中,我们主要在电路抽象级别解决这些问题。对于电源问题,我们将重点放在时钟功率上,因为在当前的高性能微处理器中,总芯片功率的很大一部分都耗散在时钟网络上。在这方面,我们提出了新颖的能量恢复触发器,可以从时钟网络中恢复能量,从而节省了大量能源。针对泄漏容限问题,提出了一种用于高扇入动态逻辑电路的容限泄漏设计技术,与标准的多米诺骨牌电路相比,该技术在泄漏抗扰度方面有相当大的提高。为了解决新出现的工艺变化问题,我们开发了成品率估计和增强技术,特别是针对SRAM缓存的技术。所开发的成品率模型用于提出一种统计设计方法,用于在纳米尺度下设计SRAM阵列。最后,开发了使用非经典CMOS器件(例如双栅极MOSFET)的低功耗和高性能的新颖电路设计技术。特别地,利用双栅极晶体管的独立栅极操作来降低功率和/或提高性能。

著录项

  • 作者

    Mahmoodi-Meimand, Hamid.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号