首页> 外文学位 >Encoding physico-chemical cues in synthetic hydrogels by triple helix assembly of collagen mimetic peptides.
【24h】

Encoding physico-chemical cues in synthetic hydrogels by triple helix assembly of collagen mimetic peptides.

机译:通过胶原蛋白模拟肽的三重螺旋组装在合成水凝胶中编码理化线索。

获取原文
获取原文并翻译 | 示例

摘要

The ECM is a complex natural system evolved to promote proliferation and differentiation of cells during tissue development. In order to create synthetic biomaterials for studying cell-scaffold interactions and ultimately for engineering tissues, scientists strive to recapitulate many characteristics of ECM by developing hydrogels that contain mechanical cues and biochemical signals such as adhesion moieties and cell growth factors. While synthetic hydrogels bypass limitations of naturally-derived materials (e.g. transfer of pathogens), nature provides inspiration to enhance the functionality of synthetic hydrogels through biomimetic approaches. The collagen triple helix is the basis for the supramolecular structure of collagen in the ECM, and its adaptation in collagen mimetic peptides (CMPs) has provided hybridization mechanisms that can be employed in the formation and functionalization of synthetic hydrogels. The aim of this dissertation is to develop novel poly(ethylene glycol) (PEG)-based hydrogels that employ CMP triple helix assembly as a non-covalent yet target-specific tool to encode physical and chemical cues into the hydrogel with spatial control.;We demonstrate that multi-arm PEG functionalized with CMPs form hydrogels supported by physical crosslinks mediated by CMP triple helix. Particle tracking microrheology shows that these physical crosslinks are sensitive to temperature as well as addition of exogenous CMPs that can disrupt crosslinks by competing for triple helix formation. This physical crosslink disruption enables the modulation of bulk hydrogel elasticity and the introduction of local stiffness gradients in PEG-CMP hydrogels. We also present photopolymerized PEG diacrylate (PEGDA) hydrogels displaying CMPs that can be further conjugated to CMPs with bioactive moieties via triple helix hybridization. Encoding these hydrogels with cell-adhesive CMPs induces cell spreading and proliferation. We further demonstrate generation of gradients and patterns of cell-instructive cues across the PEGDA scaffold that mimic the distribution of insoluble bioactive factors in the natural ECM. Finally, we present a bifunctional CMP featuring a pro-angiogenic domain that can induce endothelial cells on synthetic scaffolds to organize into capillary-like networks. Application of this peptide to hydrogels photopatterned with CMP derivatives enables spatially directed angiogenic activation that shows great potential for microvasculature engineering.
机译:ECM是一个复杂的自然系统,在组织发育过程中可以促进细胞的增殖和分化。为了创建用于研究细胞-支架相互作用并最终用于工程组织的合成生物材料,科学家们致力于通过开发包含机械线索和生化信号(如粘附部分和细胞生长因子)的水凝胶来概括ECM的许多特征。尽管合成水凝胶绕过了天然来源材料的局限性(例如病原体的转移),但自然界提供了灵感,通过仿生方法来增强合成水凝胶的功能。胶原蛋白三螺旋结构是ECM中胶原蛋白超分子结构的基础,它对胶原蛋白模拟肽(CMP)的适应性提供了可用于合成水凝胶的形成和功能化的杂交机制。本文的目的是开发一种新型的基于聚乙二醇(PEG)的水凝胶,该凝胶利用CMP三螺旋组装作为非共价但具有目标特异性的工具,通过空间控制将物理和化学线索编码到水凝胶中。我们证明了用CMPs功能化的多臂PEG形成了由CMP三重螺旋介导的物理交联支持的水凝胶。粒子跟踪微流变学表明,这些物理交联对温度以及外源CMP的添加均敏感,它们可以通过竞争三重螺旋的形成而破坏交联。这种物理交联破坏能够调节水凝胶的整体弹性,并在PEG-CMP水凝胶中引入局部刚度梯度。我们还介绍了显示CMP的光聚合PEG二丙烯酸酯(PEGDA)水凝胶,可以通过三重螺旋杂交进一步将其与具有生物活性部分的CMP偶联。用具有细胞粘附性的CMP对这些水凝胶进行编码可诱导细胞扩散和增殖。我们进一步证明了跨PEGDA支架的细胞指导信号的梯度和模式的生成,这些信号和模式模拟了天然ECM中不溶性生物活性因子的分布。最后,我们提出了一种具有前血管生成域的双功能CMP,该域可以诱导合成支架上的内皮细胞组织成毛细管样网络。将此肽应用于用CMP衍生物进行光图案化的水凝胶可实现空间定向的血管生成活化,这显示了微脉管工程的巨大潜力。

著录项

  • 作者

    Stahl, Patrick.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Engineering Biomedical.;Engineering Materials Science.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号