首页> 外文学位 >Fabrication and modeling of stretchable conductors for traumatic brain injury research.
【24h】

Fabrication and modeling of stretchable conductors for traumatic brain injury research.

机译:用于颅脑损伤研究的可拉伸导体的制作和建模。

获取原文
获取原文并翻译 | 示例

摘要

Stretchable electronics are an emergent class of electronics that can retain their electric functionality under large mechanical deformation, such as stretching, bending and compression. Like traditional electric circuits, stretchable electronics rely on electrical conductors, but in this specific instance the conductors must also be stretchable. This thesis research had three goals: (1) fabricate elastically stretchable conductors that retain their electrical conductance when stretched by tens of percent of strain; (2) understand the underlying stretching mechanism of gold conductors on polydimethylsiloxane (PDMS) substrates; (3) produce a special device—a stretchable microelectrode array, which contains a matrix of stretchable conductors that enables a new approach to studying traumatic brain injury.;We first developed and optimized the micro-fabrication process to make elastically stretchable thin gold film conductors on PDMS substrates. The conductors can retain electrical conduction while being stretched reversibly to 140% uniaxially and 16% radially. We further developed a fabrication process to encapsulate the conductors with either a commercially available photopatternable silicone (PPS) or with PDMS. 100 µm by 100 µm vias were patterned in the encapsulation layer to expose electrical contacts. PPS encapsulated conductors can be stretched uniaxially to 80%, and the PDMS encapsulated conductor can be stretched to ∼15%, without losing electrical conduction. We also introduced acrylate-based shape memory polymers (SMPs) as a new type of substrate for stretchable conductors. Their stiffness can be tuned by varying the monomer composition or by changing the ambient temperature. Thin gold film conductors deposited on pre-strained SMPs remain conductive when first stretched and then relaxed to their pre-strain value. Moreover, an SMP can also serve as a stretchable carrier to make pre-strained conductors on an overlying PDMS membrane. The resistance of gold conductors made on pre-strained PDMS changes less during stretching than that made on non-pre-strained PDMS substrate.;We built a model of the electrical resistance in function of strain. The model is based on the topography of the thin gold film on PDMS. This model is a first attempt at predicting electrical resistance of stretchable thin gold film conductors. Lastly, we fabricated stretchable microelectrode arrays (SMEAs). They were utilized at Columbia University to study traumatic brain injury (TBI). Tissues cultured on SMEA remained viable for 19 days, and the electrodes were able to both stimulate and record neural tissue activity before, during and after stretching. Therefore SMEAs are able to bring together mechanical injury, electrophysiological recording and pharmacological studies. The SMEAs could serve as in vitro platforms for high throughput therapeutic screening and discovery for traumatic injury. The ability to reproducibly fabricate stretchable conductors using micro-fabrication technology will facilitate adoption by industry. The ability to understand the stretching mechanism will enable us to design more robust material systems. The SMEA prototypes demonstrate that stretchable conductors are practical, and their mechanical compatibility with biological systems also makes them candidates for use in biomedical devices.
机译:可伸缩电子器件是新兴的一类电子器件,可以在较大的机械变形(例如拉伸,弯曲和压缩)下保持其电功能。像传统的电路一样,可伸展的电子设备也依赖于电导体,但是在这种特定情况下,导体也必须是可伸展的。本论文的研究有三个目标:(1)制造弹性可拉伸的导体,使其在被拉伸百分之十的应变时仍保持导电。 (2)了解聚二甲基硅氧烷(PDMS)基底上金导体的潜在拉伸机制; (3)生产一种特殊的装置-可伸展的微电极阵列,其中包含可伸展导体的矩阵,从而为研究颅脑外伤提供了一种新方法。;我们首先开发并优化了微加工工艺,以制造可弹性拉伸的金薄膜导体在PDMS基材上。导体可保持导电,同时可逆地单轴拉伸至140%,径向可拉伸至16%。我们进一步开发了一种制造工艺,用市售可光图案化的有机硅(PPS)或PDMS封装导体。在封装层中对100 µm x 100 µm的过孔进行构图,以暴露出电接触。 PPS封装的导体可以单轴拉伸到80%,PDMS封装的导体可以拉伸到〜15%,而不会失去导电性。我们还推出了基于丙烯酸酯的形状记忆聚合物(SMP),作为可拉伸导体的新型基材。它们的刚度可以通过改变单体组成或通过改变环境温度来调节。沉积在预应变SMP上的金薄膜导体在首次拉伸然后松弛到其预应变值时仍保持导电。此外,SMP还可以用作可拉伸的载体,以在覆盖的PDMS膜上制作预应变的导体。在预拉伸的PDMS上制作的金导体的电阻在拉伸过程中的变化要比在非预拉伸的PDMS基板上制作的电阻小。;我们建立了电阻随应变函数的模型。该模型基于PDMS上金薄膜的形貌。该模型是预测可拉伸金薄膜导体电阻的首次尝试。最后,我们制造了可拉伸的微电极阵列(SMEA)。他们在哥伦比亚大学被用来研究颅脑外伤(TBI)。在SMEA上培养的组织可存活19天,电极在拉伸之前,期间和之后均能够刺激和记录神经组织的活动。因此,SMEA能够将机械损伤,电生理记录和药理研究结合在一起。 SMEA可以作为体外平台,用于高通量治疗性筛选和发现创伤。利用微细加工技术可再现地制造可拉伸导体的能力将促进工业的采用。了解拉伸机制的能力将使我们能够设计出更坚固的材料系统。 SMEA原型证明,可拉伸导体是实用的,它们与生物系统的机械兼容性也使其成为用于生物医学设备的候选对象。

著录项

  • 作者

    Cao, Wenzhe.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Biology Neuroscience.;Engineering Materials Science.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 228 p.
  • 总页数 228
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号