首页> 外文学位 >Evolutionary optimization algorithms for nonlinear systems.
【24h】

Evolutionary optimization algorithms for nonlinear systems.

机译:非线性系统的进化优化算法。

获取原文
获取原文并翻译 | 示例

摘要

Many real world problems in science and engineering can be treated as optimization problems with multiple objectives or criteria. The demand for fast and robust stochastic algorithms to cater to the optimization needs is very high. When the cost function for the problem is nonlinear and non-differentiable, direct search approaches are the methods of choice. Many such approaches use the greedy criterion, which is based on accepting the new parameter vector only if it reduces the value of the cost function. This could result in fast convergence, but also in misconvergence where it could lead the vectors to get trapped in local minima. Inherently, parallel search techniques have more exploratory power. These techniques discourage premature convergence and consequently, there are some candidate solution vectors which do not converge to the global minimum solution at any point of time. Rather, they constantly explore the whole search space for other possible solutions.;In this thesis, we concentrate on benchmarking three popular algorithms: Real-valued Genetic Algorithm (RGA), Particle Swarm Optimization (PSO), and Differential Evolution (DE). The DE algorithm is found to out-perform the other algorithms in fast convergence and in attaining low-cost function values. The DE algorithm is selected and used to build a model for forecasting auroral oval boundaries during a solar storm event. This is compared against an established model by Feldstein and Starkov. As an extended study, the ability of the DE is further put into test in another example of a nonlinear system study, by using it to study and design phase-locked loop circuits. In particular, the algorithm is used to obtain circuit parameters when frequency steps are applied at the input at particular instances.
机译:科学和工程学中的许多现实世界问题都可以视为具有多个目标或标准的优化问题。满足优化需求的快速而强大的随机算法的需求非常高。当问题的成本函数是非线性且不可微的时,直接搜索方法是首选方法。许多这样的方法使用贪婪准则,该准则基于仅当新参数向量减小成本函数的值时才接受。这可能会导致快速收敛,但也会导致失收敛,从而可能导致向量陷入局部极小值。本质上,并行搜索技术具有更大的探索能力。这些技术不鼓励过早收敛,因此,存在一些候选解向量,它们在任何时间点都不会收敛于全局最小解。而是,他们不断探索整个搜索空间以寻找其他可能的解决方案。在本文中,我们集中于对三种流行的算法进行基准测试:实值遗传算法(RGA),粒子群优化(PSO)和差分进化(DE)。发现DE算法在快速收敛和获得低成本函数值方面优于其他算法。选择DE算法并将其用于构建模型,以预测太阳风暴事件期间的极光椭圆边界。将其与Feldstein和Starkov建立的模型进行比较。作为扩展的研究,在非线性系统研究的另一个示例中,通过使用DE来研究和设计锁相环电路,进一步测试了DE的能力。特别地,当在特定情况下在输入处施加频率阶跃时,该算法用于获取电路参数。

著录项

  • 作者

    Raj, Ashish.;

  • 作者单位

    Utah State University.;

  • 授予单位 Utah State University.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2013
  • 页码 90 p.
  • 总页数 90
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号