首页> 外文学位 >A computer aided multiscale material design optimization framework for composite materials tailoring.
【24h】

A computer aided multiscale material design optimization framework for composite materials tailoring.

机译:用于复合材料裁剪的计算机辅助多尺度材料设计优化框架。

获取原文
获取原文并翻译 | 示例

摘要

The need and the opportunity for significant savings in both time and cost for the engineered development of advanced nanomaterials coupled with the tremendous growth in the past couple of decades in computational materials science has not yet materialized into significant material design tool developments.;Of particular importance in the engineering design of composite materials for various applications is the ability to tailor the constituent materials and the internal architectures. The inverse problem of determining an optimal microstructure for a desired application is a challenging task. This procedure has been traditionally accomplished by trial-and-error and depends considerably on the designer's intuition and experience. For this reason, obtaining new materials has been a time consuming and an expensive process. Accordingly, a systematic method capable of synthesizing the optimal microstructure that will satisfy the design requirements, while reducing cost and time, is desired.;The intensive computational cost of numerical tools for material behavior analysis makes the use of iterative design and optimization procedures based on such simulations prohibitively expensive to perform. One therefore, requires a design approach that can incorporate multiple simulations of varying fidelity in design iterations, in an iterative manner, while simultaneously reducing the design cycle time.;The present investigation focuses on the development of a simulation-based design optimization methodology to predict the most suitable microstructures of Silicon Carbide -- Silicon Nitride (SiC-Si3N4) nanocomposites for desired high temperature properties. This work presents a systematic optimization methodology to predict optimal material microstructures, while considering uncertainties in the microstructural representations with simultaneous reduction in the design cycle time. Also, a trust region managed variable fidelity optimization framework is proposed in this investigation to address the computational challenges and model management issues that are inherent to multiscale material design. Although the material of interest in this investigation is Silicon Carbide -- Silicon Nitride (SiC-Si 3N4), the presented methods are not restrictive and could be an invaluable design tool to support the development of any type of materials.;Overall, the result of the present investigation is a systematic method capable of predicting optimal microstructure that will satisfy the design requirements of targeted properties, while reducing cost and time.
机译:先进的纳米材料的工程开发需要大量的时间和成本,同时在过去的几十年中计算机材料科学的迅猛发展,这种需求和机会尚未实现重大的材料设计工具开发。用于各种应用的复合材料的工程设计中的能力是定制组成材料和内部体系结构的能力。确定所需应用的最佳微观结构的反问题是一项艰巨的任务。传统上,此程序是通过反复试验来完成的,并且在很大程度上取决于设计者的直觉和经验。因此,获得新材料既耗时又昂贵。因此,需要一种能够合成满足设计要求的最佳微观结构,同时降低成本和时间的系统方法。;用于材料行为分析的数值工具的大量计算成本是基于迭代设计和优化程序进行的。这样的模拟执行起来非常昂贵。因此,人们需要一种设计方法,该方法可以以迭代方式将多个逼真度不同的仿真合并到设计迭代中,同时减少设计周期。本研究着重于开发基于仿真的设计优化方法以预测碳化硅最合适的微结构-氮化硅(SiC-Si3N4)纳米复合材料,可实现所需的高温性能。这项工作提出了一种系统的优化方法,以预测最佳的材料微观结构,同时考虑到微观结构表示中的不确定性,同时缩短了设计周期。此外,在这项研究中提出了一个信任区域管理的变量保真度优化框架,以解决多尺度材料设计所固有的计算难题和模型管理问题。尽管此研究中感兴趣的材料是碳化硅-氮化硅(SiC-Si 3N4),但所提出的方法并非限制性的,并且可能是支持任何类型材料开发的宝贵设计工具。本研究的目的是一种系统的方法,该方法能够预测最佳的微结构,该结构将满足目标性能的设计要求,同时减少成本和时间。

著录项

  • 作者

    Rodriguez, Giberto Mejia.;

  • 作者单位

    University of Notre Dame.;

  • 授予单位 University of Notre Dame.;
  • 学科 Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:13

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号