首页> 外文学位 >Aqueous suspensions of polymer coated magnetite nanoparticles: Colloidal stability, specific absorption rate, and transverse relaxivity.
【24h】

Aqueous suspensions of polymer coated magnetite nanoparticles: Colloidal stability, specific absorption rate, and transverse relaxivity.

机译:聚合物涂层磁铁矿纳米颗粒的水悬浮液:胶体稳定性,比吸收率和横向弛豫性。

获取原文
获取原文并翻译 | 示例

摘要

The design, functionalization, characterization, and applications of magnetic nanoparticles have garnered significant interest over the past several decades. While this area has garnered increasing attention, several questions remain unanswered about the stability of these systems and it's influence on their biomedical applications. To help answer these questions about the stability of these, a novel tri(nitroDOPA) terminated polymer based ligand has been developed for the stabilization of magnetite nanoparticles. The synthesis involves a process in which ethylene oxide is polymerized using a trivinyl initiator, modified with carboxylic acid using a free radical addition of mercaptoundecanoic acid, and then functionalized with nitroDOPA using N,N-dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (NHS) chemistry. This polymer has displayed robust adhesion even in harsh chemical environments, out performing many polymers used today for the stabilization of magnetite. Along these same lines, the effects of instability of these systems were analyzed in both MRI and magnetic hyperthermia applications. It is widely known that formation of linear aggregates (i.e. chains) occurs in more concentrated ferrofluids systems and that this has an affect on the ferrofluid properties. It has been recently reported that for some suspensions of magnetic nanoparticles the transverse proton relaxation rate, R2, is dependent on the time that the sample is exposed to an applied magnetic field. This time dependence has been linked to the formation of linear aggregates or chains in an applied magnetic field via numerical modeling. In this work the relationships between colloidal stability, the formation of these linear structures, and changes observed in the proton transverse relaxation rate and heating rate in magnetic hyperthermia of aqueous suspensions of magnetic particles are examined. The results indicate that varying the ligand length has a direct effect on the colloidal arrangement of the system in a magnetic field, producing differences in the rate and size of chain formation, and hence systematic changes in transverse relaxation and heating rates. With increasing ligand brush length, attractive inter-particle interactions are reduced, which results in slower aggregate formation and shorter linear aggregate length. These results have implications for the stabilization, characterization and potentially the toxicity of magnetic nanoparticle systems used in biomedical applications.
机译:在过去的几十年中,磁性纳米颗粒的设计,功能化,表征和应用引起了人们的极大兴趣。尽管该领域吸引了越来越多的关注,但有关这些系统的稳定性及其对它们的生物医学应用的影响,仍有几个问题尚待解答。为了帮助回答有关这些稳定性的这些问题,已经开发了一种新型的三(硝基DOPA)封端的聚合物基配体,用于稳定磁铁矿纳米颗粒。合成涉及以下过程:使用三乙烯基引发剂聚合环氧乙烷,使用巯基癸酸的自由基加成物用羧酸改性,然后使用N,N-二环己基碳二亚胺(DCC)和N-羟基琥珀酰亚胺(NHS)用硝基DOPA进行官能化。化学。即使在恶劣的化学环境中,这种聚合物也显示出强大的附着力,其性能优于当今用于稳定磁铁矿的许多聚合物。沿着同样的思路,在MRI和磁热疗应用中分析了这些系统的不稳定性。众所周知,线性聚集体(即链)的形成发生在更浓的铁磁流体体系中,这对铁磁流体的性能有影响。最近已经报道,对于磁性纳米颗粒的一些悬浮液,横向质子弛豫率R 2取决于样品暴露于施加的磁场的时间。这种时间依赖性已通过数值建模与外加磁场中线性聚集体或链的形成相关。在这项工作中,检查了胶体稳定性,这些线性结构的形成,以及在磁热的水悬浮液的磁热疗中观察到的质子横向弛豫速率和加热速率变化之间的关系。结果表明,改变配体的长度直接影响系统在磁场中的胶体排列,产生链形成速率和尺寸的差异,从而导致横向弛豫和加热速率发生系统性变化。随着配体刷长度的增加,有吸引力的颗粒间相互作用减少,这导致较慢的聚集体形成和较短的线性聚集体长度。这些结果对生物医学应用中使用的磁性纳米颗粒系统的稳定性,表征和潜在毒性具有影响。

著录项

  • 作者

    Saville, Steven Lee.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Chemistry Polymer.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 217 p.
  • 总页数 217
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号