首页> 外文学位 >Magnetization dynamics using ultrashort magnetic field pulses.
【24h】

Magnetization dynamics using ultrashort magnetic field pulses.

机译:使用超短磁场脉冲的磁化动力学。

获取原文
获取原文并翻译 | 示例

摘要

Very short and well shaped magnetic field pulses can be generated using ultra-relativistic electron bunches at Stanford Linear Accelerator. These fields of several Tesla with duration of several picoseconds are used to study the response of magnetic materials to a very short excitation. Precession of a magnetic moment by 90 degrees in a field of 1 Tesla takes about 10 picoseconds, so we explore the range of fast switching of the magnetization by precession. Our experiments are in a region of magnetic excitation that is not yet accessible by other methods. The current table top experiments can generate fields longer than 100 ps and with strength of 0.1 Tesla only.; Two types of magnetic were used, magnetic recording media and model magnetic thin films. Information about the magnetization dynamics is extracted from the magnetic patterns generated by the magnetic field. The shape and size of these patterns are influenced by the dissipation of angular momentum involved in the switching process.; The high-density recording media, both in-plane and perpendicular type, shows a pattern which indicates a high spin momentum dissipation. The perpendicular magnetic recording media was exposed to multiple magnetic field pulses. We observed an extended transition region between switched and non-switched areas indicating a stochastic switching behavior that cannot be explained by thermal fluctuations.; The model films consist of very thin crystalline Fe films on GaAs. Even with these model films we see an enhanced dissipation compared to ferromagnetic resonance studies. The magnetic patterns show that damping increases with time and it is not a constant as usually assumed in the equation describing the magnetization dynamics. The simulation using the theory of spin-wave scattering explains only half of the observed damping. An important feature of this theory is that the spin dissipation is time dependent and depends on the large angle between the magnetization and the magnetic field.
机译:使用斯坦福线性加速器的超相对论电子束可以产生非常短且形状良好的磁场脉冲。持续时间为几皮秒的几个特斯拉磁场用于研究磁性材料对非常短的激励的响应。在1特斯拉的磁场中将磁矩进动90度大约需要10皮秒,因此我们探索了通过进动进行磁化快速切换的范围。我们的实验是在其他方法尚无法达到的磁激发区域中。当前的桌面实验可以产生大于100 ps的场,并且强度仅为0.1 Tesla。使用两种类型的磁性,磁性记录介质和模型磁性薄膜。从磁场产生的磁模式中提取有关磁化动力学的信息。这些图案的形状和大小受切换过程中角动量耗散的影响。平面型和垂直型的高密度记录介质都显示出指示高自旋动量耗散的图案。垂直磁记录介质暴露于多个磁场脉冲。我们观察到开关区域和非开关区域之间的过渡区域扩大,表明随机开关行为无法用热波动来解释。模型膜由GaAs上非常薄的结晶Fe膜组成。即使使用这些模型胶片,与铁磁共振研究相比,我们也看到了更高的耗散。磁模式表明,阻尼随时间增加,并且不是描述磁化动力学方程式中通常假定的常数。使用自旋波散射理论进行的仿真仅解释了所观察到的阻尼的一半。该理论的重要特征是,自旋耗散与时间有关,并且取决于磁化强度与磁场之间的大角度。

著录项

  • 作者

    Tudosa, Ioan.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Physics Electricity and Magnetism.; Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 电磁学、电动力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号