首页> 外文学位 >Development of conjugate heat transfer capability to an unstructured flow solver: U(2)NCLE.
【24h】

Development of conjugate heat transfer capability to an unstructured flow solver: U(2)NCLE.

机译:非结构化流动求解器的共轭传热能力的发展:U(2)NCLE。

获取原文
获取原文并翻译 | 示例

摘要

A precise prediction of the heat loads in metal materials in contact with the hot gas is an increasingly demanding problem in the design phase of the complex cooling schemes in the modern turbine engines. The coupled calculation of the fluid flow and the heat transfer is a promising approach as heat transfer coefficients are not necessary in the calculation and the heat transfer itself is part of the calculation and can be derived from local heat fluxes. Therefore, it is useful to incorporate an appropriate scheme for directly coupled heat transfer computations (conjugate heat transfer), capable of handling complex geometries into the existing computational fluid dynamics (CFD) codes. The intent of the present work is to add the conjugate heat transfer solving capability to an existing flow solver.; The coupled approach is achieved by maintaining a continuous local heat flux and a common temperature at the points along the fluid-solid interface. At every iteration, the temperature which is directly calculated via the equality of the local heat fluxes passing the fluid-solid contacting cell faces serves as the thermal boundary condition on the interfaces, instead of traditional isothermal/adiabatic thermal boundary conditions. In the solid domain, simplified energy equation is solved using the discretization and computational methods which have been used in the flow by introducing an effective equation of state. The connectivity is built for the points at the fluid-solid interfaces in order to communicate the thermal conditions with each other.; Validation of the developed conjugate capability has been investigated. Computed results have been compared with theoretical or experimental results for laminar flat plate, high pressure guide vane, cooled plate, and effusion-cooled plate. All results obtained thus far compare rather favorably with theoretical or experimental results.
机译:在现代涡轮发动机的复杂冷却方案的设计阶段,精确预测与热气接触的金属材料中的热负荷是一个日益严峻的问题。流体流动与传热的耦合计算是一种很有前途的方法,因为传热系数在计算中不是必需的,并且传热本身是计算的一部分,并且可以从局部热通量得出。因此,将能够处理复杂几何形状的直接耦合传热计算(共轭传热)的适当方案合并到现有的计算流体动力学(CFD)代码中是有用的。本发明的目的是将共轭传热求解能力增加到现有的流动求解器中。通过在沿着流体-固体界面的点处保持连续的局部热通量和共同的温度来实现耦合方法。在每次迭代中,通过流过固液接触单元表面的局部热通量的相等性直接计算出的温度将成为界面上的热边界条件,而不是传统的等温/绝热热边界条件。在固体域中,简化的能量方程式是使用离散化和计算方法求解的,这些方法已通过引入有效的状态方程式而在流中使用。连通性是为流固界面上的点建立的,以便相互传递热工条件。已经研究了开发的共轭能力的验证。将计算结果与层流平板,高压导流叶片,冷却板和喷射冷却板的理论或实验结果进行了比较。迄今为止获得的所有结果均与理论或实验结果相当有利。

著录项

  • 作者

    Xue, Qingluan.;

  • 作者单位

    Mississippi State University.;

  • 授予单位 Mississippi State University.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2005
  • 页码 91 p.
  • 总页数 91
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号