首页> 外文学位 >Trajectory design using approximate analytic solutions of the N-body problem.
【24h】

Trajectory design using approximate analytic solutions of the N-body problem.

机译:使用N体问题的近似解析解设计轨迹。

获取原文
获取原文并翻译 | 示例

摘要

The N-body problem as formulated by Sir Isaac Newton in the seventeenth century has been a rich source of mathematical and scientific discovery. Continuous attempts invested into the solution of this problem over the years have resulted in a host of remarkable theories that have changed the way the world is viewed and analyzed. A final solution in terms of an infinite time-dependent power series was finally discovered in the latter part of the twentieth century. However, the slow convergence of this result makes its implementation impractical in every day spacecraft trajectory design and optimization. The only feasible way to solve the N-body problem reliably is to numerically integrate the equations of motion.;This dissertation derives two new variable time step algorithms using time dependent power series solutions developed for the two-body problem. These power series solutions allow the space-dependent N-body problem to be transformed into a time-dependent system of equations that can be solved analytically. The analytic results do not yield global solutions, but rather approximate outcomes whose order of accuracy can be controlled by the user.;The two algorithms are used to investigate scenarios corresponding to a highly elliptical orbit in the two-body problem; periodic, central configuration scenarios in the three-body problem; and a non-periodic scenario in the restricted three-body problem. The results obtained are compared to the outcomes returned by a variable time step fourth-order, fifth-order Runge-Kutta numerical integration algorithm. The outcomes derived for each situation demonstrate that the two new variable time step algorithms are both more accurate and much more efficient than their Runge-Kutta counterpart.
机译:艾萨克·牛顿爵士在17世纪提出的N体问题已成为数学和科学发现的丰富来源。多年来,为解决这个问题进行了不断的尝试,已经产生了许多杰出的理论,这些理论改变了人们观察和分析世界的方式。在二十世纪后期,最终发现了一个无限的,与时间有关的幂级数的最终解决方案。但是,该结果的缓慢收敛使得其实现在每天的航天器轨迹设计和优化中都不切实际。可靠地解决N体问题的唯一可行方法是对运动方程进行数值积分。本论文利用针对两体问题开发的时间相关幂级数解推导了两种新的可变时步算法。这些幂级数解使空间相关的N体问题转换为时间相关的方程组,可以通过解析来求解。分析结果不能得出整体解,而是可以由用户控制精度的近似结果。两种算法用于研究与双体问题中的高椭圆轨道相对应的场景;三体问题中的周期性,集中配置方案;受限三体问题中的非周期情形。将获得的结果与可变时间步长的四阶,五阶Runge-Kutta数值积分算法返回的结果进行比较。针对每种情况得出的结果表明,这两种新的可变时间步长算法比其Runge-Kutta算法更准确,更高效。

著录项

  • 作者

    Benavides, Julio Cesar.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号