首页> 外文学位 >Efficient Modeling of Plasma Wake Field Acceleration Experiments Using Particle-In-Cell Methods.
【24h】

Efficient Modeling of Plasma Wake Field Acceleration Experiments Using Particle-In-Cell Methods.

机译:使用单元内粒子方法对等离子唤醒场加速实验进行高效建模。

获取原文
获取原文并翻译 | 示例

摘要

There is no clear path for building a particle accelerator at the energy frontier beyond the Large Hadron Collider (LHC). One option that is receiving attention is to use plasma wave wakefields driven by intense particle beams. Recent experiments conducted at the Stanford Linear Accelerator Center (SLAC) show that accelerating gradients in such wakefields in excess of 50 GeV/m can be sustained over meter scales. Based on this, a linear collider concept of staging one-meter long plasma cells together has been proposed. A facility at SLAC has been built to study the physics in one stage. In this dissertation we describe improvements and enhancements to a highly efficient simulation model for simulating current experiments at SLAC as well as parameters beyond the reach of current experiments. The model is the quasi-static particle-in-cell (PIC) code QuickPIC. A modified set of quasi-static field equations were developed, which reduced the number of predictor corrector iteration loops and an improved source deposit scheme was developed to reduce the parallel communication. These improvements led to a factor of 5 to 8 (depending on the simulation parameters) speedup compared with the previous set of field equations and deposition scheme. Several new modules were also added to QuickPIC, including the multiple field ionization and improved beam and plasma particle diagnostics. We also used QuickPIC to study the optimum plasma density for maximizing the acceleration field for fixed electron beam parameters. QuickPIC simulations were also used to study and design two-bunch PWFA experiments at SLAC including methods for mitigating the ionization-induced beam head erosion. The mitigation methods can enhance the energy gain in two-bunch PWFA experiments at SLAC by a factor of 10 for the same beam parameters. For beam parameters beyond SLAC but perhaps necessary for a future collider, QuickPIC was used to study how the ultra high electric fields of a tightly focused second electron bunch could lead to ion motion, which disrupts the focusing fields on the second bunch. The resulting nonlinearity in the transverse focusing force of the plasma wake will lead to emittance growth. We used QuickPIC to carry out the first fully self-consistent high resolution simulation on the effects of ion motion for PWFA linear collider problems. Preliminary results showed that the plasma-ion-motion-induced emittance growth was limited to less than a factor of 2. In addition to the electron beam driven PWFA, we also study how a short proton beam can excite a large plasma wake. Such short proton beams are currently not experimentally available. We therefore also study how long proton beams such as those at Fermi National Laboratory and CERN may drive a large plasma wake through a self-modulation instability. A linear theory for the self-modulation instability is presented under the wide beam limit. QuickPIC simulations show that the self-modulation of a long proton beam in a plasma may lead to the micro-bunching of the beam and excite a large plasma wake.
机译:在大型强子对撞机(LHC)之外的能源前沿,没有明确的途径可以制造粒子加速器。一种受到关注的选择是使用由强粒子束驱动的等离子波尾波场。在斯坦福线性加速器中心(SLAC)上进行的最新实验表明,此类尾流场中超过50 GeV / m的加速梯度可以在米级上保持。基于此,提出了将一米长的浆胞聚集在一起的线性对撞机概念。 SLAC已建立了一个设施,用于在一个阶段研究物理。在本文中,我们描述了一种高效的仿真模型的改进和增强,该模型可用于在SLAC上模拟当前实验以及超出当前实验范围的参数。该模型是准静态单元格内粒子(PIC)代码QuickPIC。开发了一组修改后的准静态场方程,该方程组减少了预测器校正器迭代循环的数量,并且开发了一种改进的源沉积方案以减少并行通信。与先前的场方程和沉积方案相比,这些改进导致速度提高了5到8倍(取决于模拟参数)。 QuickPIC还添加了几个新模块,包括多场电离以及改进的束和等离子体粒子诊断。我们还使用QuickPIC研究了最佳的等离子体密度,以最大化固定电子束参数的加速度场。 QuickPIC模拟还用于研究和设计SLAC的两束PWFA实验,包括减轻电离引起的束头腐蚀的方法。对于相同的光束参数,缓解方法可以将SLAC两束PWFA实验中的能量增益提高10倍。对于SLAC以外的光束参数,但对于将来的对撞机来说可能是必需的,QuickPIC用于研究紧密聚焦的第二电子束的超高电场如何导致离子运动,从而破坏第二束电子束的聚焦场。等离子体尾流的横向聚焦力中所产生的非线性将导致发射率增长。我们使用QuickPIC对离子运动对PWFA线性对撞机问题的影响进行了第一个完全自洽的高分辨率模拟。初步结果表明,等离子体离子运动引起的发射率增长被限制为小于2倍。除了电子束驱动的PWFA外,我们还研究了短质子束如何激发大的等离子体唤醒。这样的短质子束目前在实验上不可用。因此,我们还研究了诸如费米国家实验室(Fermi National Laboratory)和欧洲核子研究中心(CERN)的质子束可能通过自调制不稳定性驱动大等离子体唤醒的时间。在宽光束限制下提出了自调制不稳定性的线性理论。 QuickPIC仿真显示,等离子体中长质子束的自调制可能会导致束的微束聚并激发大的等离子体唤醒。

著录项

  • 作者

    An, Weiming.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号