首页> 外文学位 >Investigating the function and regulation of the Arabidopsis plasma membrane proton pump AHA1 using reverse genetics and mass spectrometry.
【24h】

Investigating the function and regulation of the Arabidopsis plasma membrane proton pump AHA1 using reverse genetics and mass spectrometry.

机译:使用逆向遗传和质谱技术研究拟南芥质膜质子泵AHA1的功能和调控。

获取原文
获取原文并翻译 | 示例

摘要

Plasma membrane proton pumps (H+-ATPases) are essential integral membrane proteins found in yeast and plants. These proteins use up to one-third of the cellular ATP pool to establish an electrochemical proton gradient across the membrane, which is essential for driving diverse downstream functions. The in planta roles of the most abundant Arabidopsis PM H+-ATPases, AHA1 and AHA2, remain unclear due to the lack of strong phenotypes in single mutants and the embryo lethal phenotype of the double mutants. Heterologous expression in yeast has provided a simplified system for studying plant H+-ATPases, but these experiments provide limited basis for understanding the native physiological roles of these proteins. Herein, I describe experiments aimed at understanding the function and regulation of AHA1 using reverse genetics and mass spectrometry based approaches. Post-translational protein phosphorylation is a common mechanism of protein regulation, and multiple phosphorylated residues have been identified in AHA proteins. Phosphorylated residues are especially abundant in the AHA C-terminal regulatory domain. Using phospho-mimic (Asp) and non-phosphorylateable (Ala) point mutant transgenes, I investigated the requirement of post-translational phosphorylation for essential AHA1 function at two C-terminal residues. While the penultimate residue, Thr948, was strictly essential for protein function, mutations at Ser904 were well tolerated in planta. AHA proteins are hypothesized to play roles in important physiological processes and are highly regulated enzymes. Although one would predict that protein interactions (for example, with kinases and phosphatases) are necessary to mediate these diverse functions, only a few interactions have been identified to date. Affinity purification combined with analysis of purified proteins by biochemical methods including mass spectrometry is one way to identify protein interactions. In order to facilitate affinity purification of AHA1 from plant tissue, I translationally fused a tandem affinity purification tag to an AHA1 genomic clone. I then established the ability of this transgene to complement aha1/aha2 embryo lethality and subsequently used an affinity purification mass spectrometry approach to identify AHA1 co-purifying proteins.
机译:质膜质子泵(H + -ATPases)是酵母和植物中必不可少的完整膜蛋白。这些蛋白质使用多达三分之一的细胞ATP池来建立跨膜的电化学质子梯度,这对于驱动各种下游功能至关重要。由于单个突变体缺乏强表型和双重突变体的胚胎致死表型,最丰富的拟南芥PM H + -ATPases AHA1和AHA2在植物中的作用尚不清楚。酵母中的异源表达为研究植物H + -ATPase提供了一个简化的系统,但是这些实验为理解这些蛋白质的天然生理作用提供了有限的基础。在这里,我描述了旨在利用反向遗传学和基于质谱的方法理解AHA1的功能和调控的实验。翻译后蛋白质磷酸化是蛋白质调节的常见机制,并且已在AHA蛋白质中鉴定出多个磷酸化残基。磷酸化的残基在AHA C端调节域中尤其丰富。使用磷酸模拟(Asp)和非磷酸化(Ala)点突变转基因,我研究了两个C末端残基的基本AHA1功能的翻译后磷酸化的要求。尽管倒数第二个残基Thr948对于蛋白质功能来说是绝对必要的,但Ser904的突变在植物中的耐受性很好。假设AHA蛋白在重要的生理过程中发挥作用,并且是高度调控的酶。尽管可以预测蛋白质相互作用(例如与激酶和磷酸酶的相互作用)是介导这些不同功能所必需的,但迄今为止,仅发现了少数相互作用。亲和纯化与通过生物化学方法(包括质谱法)分析纯化的蛋白质相结合,是鉴定蛋白质相互作用的一种方法。为了促进从植物组织中亲和纯化AHA1,我将串联亲和纯化标签翻译融合到AHA1基因组克隆上。然后,我确定了该转基因补充aha1 / aha2胚胎致死力的能力,随后使用了亲和纯化质谱法来鉴定AHA1共纯化蛋白。

著录项

  • 作者

    Rodrigues, Rachel Beth.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Chemistry Biochemistry.;Agriculture Plant Culture.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号