首页> 外文学位 >Temperature dependent characteristics of Gallium nitride/Gallium-Indium nitride based light emitting diodes.
【24h】

Temperature dependent characteristics of Gallium nitride/Gallium-Indium nitride based light emitting diodes.

机译:氮化镓/氮化镓铟镓基发光二极管的温度相关特性。

获取原文
获取原文并翻译 | 示例

摘要

The light-output power emitted by GaN-based light-emitting diodes decreases with increasing temperature; this is a well-known phenomenon with significant impact in the field of solid-state lighting. In this work, the different mechanisms causing this reduction in light-output power are discussed and analyzed. Two important loss mechanisms and their temperature dependence are discussed: Shockley-Read-Hall recombination and electron leakage out of the active region. Each of these is examined in detail, and the dominance of each mechanism's role in the reduction in efficiency is studied at different current densities. The temperature dependence of these mechanisms is quantitatively extracted from experimental data. The Shockley-Read-Hall recombination rate increases with temperature and is found to greatly reduce the light output at low current densities ( 35 A/cm2). However, this mechanism fails to explain the drop in light-output power at high current densities ( 35 A/cm2). At the typical operating current density ( ≈ 35 A/cm2), as temperature increases, we find that Shockley-Read-Hall recombination is not sufficient to fully explain the reduction in efficiency. Electron leakage out of the active region is shown to be a major contribution to the recombination at 450 K and 35 A/cm2. Both Shockley-Read-Hall and electron leakage significantly contribute to the reduction in light-output power in GaInN/GaN light-emitting diodes at high temperatures. Methods of reducing these two recombination mechanisms are discussed to improve the temperature stability in GaInN/GaN based light-emitting diodes. Firstly, reducing the threading dislocation density (TDD) by using lattice matched substrates, or unique buffer layers, would greatly reduce the Shockley-Read-Hall recombination. Secondly, electron leakage must be reduced. This can be completed by: (i) enhancing p-type doping, leading to less asymmetry of carrier concentration or mobility in the junction, (ii) reducing the strain in the epitaxial layers with polarization matched material, or applying external strain via a capping layer, and (iii) redesigning the active region of the LED to have more quantum wells, thereby hindering electron leakage.
机译:GaN基发光二极管发出的光输出功率随温度升高而降低;这是一种众所周知的现象,对固态照明领域有重大影响。在这项工作中,讨论和分析了导致光输出功率降低的不同机制。讨论了两个重要的损耗机理及其对温度的依赖性:肖克利-雷德-霍尔复合和电子从有源区漏出。详细检查了每种方法,并研究了在不同电流密度下每种机理在降低效率中的主导作用。这些机制的温度依赖性是从实验数据中定量提取的。 Shockley-Read-Hall重组速率随温度增加而增加,并发现在低电流密度( 35 A / cm2)下会大大降低光输出。但是,这种机制无法解释高电流密度( 35 A / cm2)下光输出功率的下降。在典型的工作电流密度(& 35 A / cm2)下,随着温度升高,我们发现Shockley-Read-Hall重组不足以完全说明效率的降低。电子泄漏出有源区是在450 K和35 A / cm2下对复合的主要贡献。 Shockley-Read-Hall霍尔效应和电子泄漏都极大地降低了GaInN / GaN发光二极管在高温下的光输出功率。讨论了减少这两种复合机制的方法,以提高基于GaInN / GaN的发光二极管的温度稳定性。首先,通过使用晶格匹配的基板或独特的缓冲层降低穿线位错密度(TDD),将大大减少Shockley-Read-Hall重组。其次,必须减少电子泄漏。这可以通过以下方式完成:(i)增强p型掺杂,从而减少结中载流子浓度或迁移率的不对称性;(ii)使用偏振匹配材料减小外延层中的应变,或通过封盖施加外部应变层;以及(iii)重新设计LED的有源区,使其具有更多的量子阱,从而阻碍电子泄漏。

著录项

  • 作者

    Meyaard, David S.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering General.;Engineering Materials Science.;Physics Condensed Matter.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 102 p.
  • 总页数 102
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号