首页> 外文学位 >Magnetohydrodynamic Modeling of Space Plasmas with Pressure Anisotropy.
【24h】

Magnetohydrodynamic Modeling of Space Plasmas with Pressure Anisotropy.

机译:具有压力各向异性的空间等离子体的磁流体动力学建模。

获取原文
获取原文并翻译 | 示例

摘要

The present generation of global 3D magnetohydrodynamic (MHD) simulations of the Sun-Earth environment is based on the assumption that the plasma pressure is isotropic. This assumption, however, is an inadequate description of space plasmas, such as plasmas in the Earth's magnetosheath and inner magnetosphere, as well as in the solar corona, where strong magnetic fields give rise to highly anisotropic plasma pressures. Specifically, particle collisions are not frequent enough to balance the particle motions along and perpendicular to the magnetic field, thus the corresponding parallel and perpendicular pressure components are different.;This dissertation research, therefore focuses on extending the University of Michigan MHD space physics code BATS-R-US to account for pressure anisotropy. The analytical model is developed by studying the formulation of anisotropic MHD under both classical and semirelativistic approximations, in particular, deriving the dispersion relation and characteristic wave speeds for semirelativistic anisotropic MHD. The software implementation of the new model, Anisotropic BATS-R-US, is verified through numerical tests.;Several applications of Anisotropic BATS-R-US are considered in this work. The first application is to simulate the quiet time terrestrial magnetosphere and validate the results with satellite measurements. Pressure anisotropy is found to widen the magnetosheath, enhance the nightside plasma pressure, and reduce the flow speed in the magnetotail. In the second application, Anisotropic BATS-R-US is coupled with two ring current models, respectively, to conduct global magnetospheric simulations during geomagnetic disturbed times. The simulation results indicate the importance of pressure anisotropy in controlling the nightside magnetic field topology. Finally, Anisotropic BATS-R-US is applied to simulate the solar corona and heliosphere, in which pressure anisotropy results in faster solar wind speeds close to the Sun. This application has the potential to capture the anisotropic heating mechanism that has not been addressed by isotropic MHD models.
机译:太阳地球环境的当前全球3D磁流体动力学(MHD)模拟基于等离子体压力是各向同性的假设。但是,这种假设不足以描述空间等离子,例如地球的磁石和内部磁层以及太阳日冕中的等离子,那里的强磁场会引起高度各向异性的等离子压力。具体而言,粒子碰撞的频率不足以平衡粒子沿磁场和垂直于磁场的运动,因此相应的平行和垂直压力分量是不同的。;本论文的研究重点是扩展密歇根大学MHD空间物理学代码BATS -R-US考虑压力各向异性。通过研究经典和半相对论近似下各向异性MHD的公式,特别是推导半相对论各向异性MHD的色散关系和特征波速,建立了解析模型。通过数值测试验证了新模型各向异性BATS-R-US的软件实现。;本工作考虑了各向异性BATS-R-US的几种应用。第一个应用程序是模拟安静时间的地球磁层,并通过卫星测量验证结果。发现压力各向异性扩大了磁石堆,提高了夜间的等离子体压力,并降低了磁尾石中的流速。在第二个应用中,各向异性BATS-R-US分别与两个环流模型耦合,以在地磁扰动期间进行全局磁层模拟。仿真结果表明压力各向异性在控制夜间磁场拓扑中的重要性。最后,各向异性BATS-R-US被用于模拟太阳日冕和日球层,其中压力各向异性导致接近太阳的太阳风速更快。该应用具有捕获各向异性加热机制的潜力,而各向异性MHD模型尚未解决这一问题。

著录项

  • 作者

    Meng, Xing.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 223 p.
  • 总页数 223
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号