首页> 外文学位 >The effects of rising ocean temperature and pco2 on the physiology and growth of giant kelp, macrocystis pyrifera, and grazing by purple urchins, strongylocentrotus purpuratus.
【24h】

The effects of rising ocean temperature and pco2 on the physiology and growth of giant kelp, macrocystis pyrifera, and grazing by purple urchins, strongylocentrotus purpuratus.

机译:海洋温度和pco2升高对巨型海带,大孢子藻的生理和生长的影响,以及紫色海胆,紫背天牛的放牧。

获取原文
获取原文并翻译 | 示例

摘要

As climate change rapidly alters the world's oceans, marine life will have to acclimate and/or adapt to warmer and more acidic conditions. While there is a growing body of literature on the individual effects of elevated temperature and CO2 on marine biota, few studies have examined the synergistic effects of these factors, especially regarding how they impact species interactions. In coastal environments of temperate latitudes, forests of kelp (large brown seaweeds in the Order Laminariales) provide habitat and food for numerous species, support enhanced biodiversity, and provide important ecosystem services. Consequently, impacts to these important ecosystem engineers can have disproportionately large effects on coastal ecosystem functioning. To determine how climate change might impact kelp forest ecosystems, I examined two of the more conspicuous and ecologically important kelp forest species, namely the giant kelp, Macrocystis pyrifera, and the purple sea urchin, Strongylocentrotus purpuratus. First, I performed three separate experiments in order to determine the effects of elevated temperature and pCO2 on M. pyrifera growth and photosynthetic performance. In my first experiment I cultured M. pyrifera meristematic tissues under three pCO2 levels (500, 1000, 1500 muatm CO 2) and examined how this impacted their growth, steady-state photosynthetic oxygen evolution, and changes in their tissue carbon:nitrogen ratios. In my second experiment, I used a fully factorial design with two temperatures (12°C and 15°C) and two pCO2 levels (500 muatm and 1500 muatm CO2), and examined how these impacted kelp growth, steady-state photosynthetic carbon uptake, and tissue carbon:nitrogen ratios. In my third experiment, I used the same fully factorial design (12°C and 15°C; 500 muatm and 1500 muatm CO2), but examined changes in kelp photosynthetic pigment composition and carbonic anhydrase activity (an estimate of their ability to use HCO3- in photosynthesis). Counter to my expectations, elevating only pCO2 in the water had no effect on kelp growth rates, photosynthesis or tissue carbon:nitrogen ratios in either of the first two experiments. In contrast, in the second experiment, elevating only seawater temperature resulted in a significant reduction in both photosynthesis and growth, and an increase in tissue carbon:nitrogen ratios. However, when seawater temperature and pCO2 were increased together, the kelps exhibited significant increases in photosynthesis and growth relative to the other treatments. This suggested that rising ocean temperatures may interact with rising pCO2 to elicit responses that are different than when either of these factors is increased by itself. In my third experiment, elevating pCO2 in the water significantly reduced carbonic anhydrase activity, suggesting a reduction in HCO3 --based photosynthesis (i.e. a down regulation of carbon concentrating mechanisms) and an increase in CO2-based photosynthesis. In contrast, elevating temperature and/or CO2 alone had littleto- no impact on photosynthetic pigment concentrations. Following the experiments on M. pyrifera, I then examined how climate change will impact the interactions between S. purpuratus and M. pyrifera. Here, I cultured these two species separately under both "present day" conditions (i.e. 12°C; 500 muatm CO2) and "future" conditions (i.e. 15°C; 1500 muatm CO2) for three months. During this period, urchins were fed kelp from either their own water conditions or the alternate conditions, resulting in a fully factorial design with four treatment combinations (urchins held under either present day or future conditions being fed kelps grown under either present day or future conditions). My results indicate that urchins held under future conditions exhibited reduced feeding and growth rates, and smaller gonads than urchins held under present day conditions regardless of the conditions in which their food was grown. In contrast, urchins held under present day conditions and fed kelp grown under future conditions showed higher feeding and growth rates compared to similar urchins fed kelps grown under present day conditions. Together, my data suggest that M. pyrifera may benefit physiologically from a warmer, more acidic (i.e. higher pCO2) ocean while S. purpuratus will likely be impacted negatively. Given that S. purpuratus can exert a strong deterministic influence on M. pyrifera distribution and abundance, changes to either of their populations that might arise from climate change can alter how they interact and thus have serious consequences for many coastal environments.
机译:随着气候变化迅速改变世界海洋,海洋生物将不得不适应和/或适应更温暖和更酸性的条件。尽管关于高温和二氧化碳对海洋生物的个体影响的文献越来越多,但很少有研究检查这些因素的协同作用,尤其是在它们如何影响物种相互作用方面。在温带纬度的沿海环境中,海带森林(海带类中的大型棕色海藻)为许多物种提供了栖息地和食物,支持了增强的生物多样性,并提供了重要的生态系统服务。因此,对这些重要的生态系统工程师的影响可能会对沿海生态系统的功能产生不成比例的巨大影响。为了确定气候变化对海带森林生态系统的影响,我研究了两个更引人注目和具有生态重要性的海带森林物种,即巨型海带,Macrocystis pyrifera和紫色海胆,Strongylocentrotus purpuratus。首先,我进行了三个独立的实验,以确定高温和pCO2对吡喃酵母的生长和光合性能的影响。在我的第一个实验中,我在三个pCO2水平(500、1000、1500 muatm CO 2)下培养了分枝杆菌分生组织,并研究了这如何影响它们的生长,稳态光合氧气的释放以及组织中碳氮比的变化。在我的第二个实验中,我使用了具有两个温度(12°C和15°C)和两个pCO2水平(500 muatm和1500 muatm CO2)的全因子设计,并研究了它们如何影响海藻生长,稳态光合碳吸收,以及组织碳:氮比。在我的第三个实验中,我使用了相同的全因子设计(12°C和15°C; 500 muatm和1500 muatm CO2),但是检查了海带光合色素成分和碳酸酐酶活性的变化(估计了它们使用HCO3的能力-在光合作用中)。与我的预期相反,在前两个实验中,仅提高水中的pCO2对海藻生长速率,光合作用或组织碳氮比率均无影响。相反,在第二个实验中,仅升高海水温度会导致光合作用和生长显着降低,并且组织碳与氮之比也会增加。但是,当海水温度和pCO2一起升高时,海带相对于其他处理而言,光合作用和生长显着增加。这表明上升的海洋温度可能与上升的pCO2相互作用,引起的反应与这些因素中的任何一个因素自身增加时不同。在我的第三个实验中,升高水中的pCO2会显着降低碳酸酐酶的活性,这表明基于HCO3的光合作用减少(即碳浓缩机制的下调)和基于CO2的光合作用增加。相反,仅升高温度和/或CO2对光合色素浓度几乎没有影响。在对毕赤酵母进行实验之后,我随后研究了气候变化将如何影响紫癜链霉菌和毕赤酵母之间的相互作用。在这里,我分别在“当前”条件(即12°C; 500 muatm CO2)和“未来”条件(即15°C; 1500 muatm CO2)两个条件下培养了这两个物种三个月。在此期间,从自己的水质条件或其他条件向海胆喂食海带,从而通过四种处理组合进行全因子设计(在当前或将来条件下饲养的海胆喂食在当前或将来条件下生长的海带)。我的结果表明,与当前条件下饲养的海胆相比,在未来条件下饲养的海胆表现出降低的进食和生长速度,并且性腺更小。相反,与当今条件下生长的类似海胆喂养的海胆相比,当前条件下饲养的海胆和未来条件下喂养的海带表现出更高的摄食和生长速率。总而言之,我的数据表明,发炎的分枝杆菌可能会从温暖,酸性更高(即更高的pCO2)海洋中受益,而紫癜链霉菌可能会受到不利影响。鉴于紫癜链球菌可对萤火虫分枝杆菌的分布和丰度产生强烈的确定性影响,气候变化可能会导致其任一种群发生变化,从而改变它们的相互作用方式,从而对许多沿海环境造成严重后果。

著录项

  • 作者

    Brown, Matthew B.;

  • 作者单位

    San Diego State University.;

  • 授予单位 San Diego State University.;
  • 学科 Biology Ecology.
  • 学位 M.S.
  • 年度 2013
  • 页码 54 p.
  • 总页数 54
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号