首页> 外文学位 >Silicon in the quantum limit: Quantum computing and decoherence in silicon architectures.
【24h】

Silicon in the quantum limit: Quantum computing and decoherence in silicon architectures.

机译:量子极限中的硅:硅架构中的量子计算和去相干。

获取原文
获取原文并翻译 | 示例

摘要

The pursuit of spin and quantum entanglement-based devices in solid-state systems has become a global endeavor. The approach of the quantum size limit in computer electronics, the many recent advances in nanofabrication, and the rediscovery that information is physical (and thus based on quantum physics) have started a worldwide race to understand and control quantum systems in a coherent and useful way. Semiconductor architectures hold promise for quantum information processing (QIP) applications due to their large industrial base and perceived scalability potential. Electron spins in silicon in particular may be an excellent architecture for QIP and also for spin electronics (spintronics) applications. While charged gates easily manipulate the charge of an electron, the spin degree of freedom is well isolated from charge fluctuations. This leads to very good spin quantum bit (qubit) stability or quantum coherence properties. Inherently small spin-orbit coupling and the existence of a spin-zero Si isotope also facilitate long single spin coherence times. Here we consider the relaxation properties of localized electronic states in silicon due to donors, quantum wells, and quantum dots. Our analysis is impeded by the complicated, many-valley band structure of silicon and previously unaddressed physics in silicon quantum wells. We find that electron spins in silicon and especially strained silicon have excellent decoherence properties. Where possible we compare with experiment to test our theories. We go beyond issues of coherence in a quantum computer to problems of control and measurement. Precisely what makes spin relaxation so long in semiconductor architectures makes spin measurement so difficult. To address this, we propose a new scheme for spin readout, which has the added benefit of automatic spin initialization, a vital component to quantum computing and quantum error correction. Our results represent important practical milestones on the way to the design and construction of a silicon-based quantum computer.
机译:在固态系统中对基于自旋和量子纠缠的器件的追求已成为一项全球努力。计算机电子领域中量子尺寸限制的方法,纳米加工的许多最新进展以及信息是物理的重新发现(因此基于量子物理学)已经开始了一场全球性的竞赛,以一种连贯且有用的方式理解和控制量子系统。半导体架构因其庞大的工业基础和可感知的可扩展性潜力,有望在量子信息处理(QIP)应用中获得应用。硅中的电子自旋尤其对于QIP以及自旋电子(spintronics)应用而言可能是一种出色的体系结构。尽管带电的栅极很容易操纵电子的电荷,但自旋自由度却与电荷波动完全隔离。这导致非常好的自旋量子位(qubit)稳定性或量子相干性。固有的小的自旋轨道耦合和自旋零硅同位素的存在也促进了长的单自旋相干时间。在这里,我们考虑由于施主,量子阱和量子点导致的硅中局部电子态的弛豫特性。我们的分析受到硅的复杂,多谷能带结构以及硅量子阱中以前未解决的物理学的阻碍。我们发现,硅(特别是应变硅)中的电子自旋具有出色的退相干特性。我们尽可能与实验进行比较以检验我们的理论。我们不仅仅涉及量子计算机中的一致性问题,还涉及控制和测量问题。正是由于这种原因,使得半导体架构中的自旋弛豫时间如此之长,使得自旋测量变得如此困难。为了解决这个问题,我们提出了一种新的自旋读出方案,它具有自动自旋初始化的额外好处,这是量子计算和量子误差校正的重要组成部分。我们的结果代表了在设计和构建基于硅的量子计算机的过程中的重要实践里程碑。

著录项

  • 作者

    Tahan, Charles George.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号