首页> 外文学位 >Functional Genomic, Microbiological and Biochemical Characterization of Plant Biomass Deconstruction by the Extrememly Thermophilic Bacterium Caldicellulosiruptor saccharolyticus.
【24h】

Functional Genomic, Microbiological and Biochemical Characterization of Plant Biomass Deconstruction by the Extrememly Thermophilic Bacterium Caldicellulosiruptor saccharolyticus.

机译:极端嗜热细菌Caldicellulosiruptor saccharolyticus对植物生物量解构的功能基因组学,微生物学和生化特征。

获取原文
获取原文并翻译 | 示例

摘要

Rising energy prices, depletion of petroleum reserves and global warming have made the development of renewable fuels a national priority. Molecular hydrogen as a transportation fuel looms as an ethanol alternative, since it produces only water as a by-product. A promising route to hydrogen is microbial because it is less environmentally intensive than traditional chemical or electrochemical processes. Caldicellosiruptor saccharolyticus (Csac) , an extremely thermophilic bacterium, produces hydrogen from cellulose-, hemicellulose and pectin-containing plant biomass. To understand the growth physiology of this microorganism with an eye towards optimizing bioenergy yields, the Csac genome was sequenced and a whole genome oligonucleotide microarray was developed and implemented. Csac was studied with focus on plant biomass deconstruction. Previous studies indicated that this bacterium co-fermented glucose and xylose without carbon catabolite repression (CCR), an attractive physiological characteristic since these two sugars are the major components of lignocellulose hydrolysates. Here, growth on glucose, xylose, galactose, fructose, mannose and arabinose, and a mixture of all six monosaccharides indicated that Csac preferred fructose (a hexose) and xylose and arabinose (both pentoses). No microbiological or transcriptomic evidence for CCR was found during growth on monosaccharide mixtures. Transcriptomes from growth on monosaccharides and hemicelluloses were used to predict sugar substrates for most of the 24 putative carbohydrate ATP-binding cassette (ABC) transporters and one phosphotransferase system (PTS) identified in the Csac genome. Broad growth substrate preferences, diversity of ABC sugar transporters, and concomitant lack of CCR support Csac's capacity to deconstruct plant biomass.;Another distinct feature of Csac and other similar organisms is the presence of novel multi-domain glycoside hydrolases. This can also be attributed to two glycoside hydrolase (GH)-laden loci in the Csac genome (Csac_1076-Csac_1080 and Csac_2404-2411). Csac_2404-Csac_2411 encodes intracellular and extracellular GH10 glycoside hydrolases that were found to not only breakdown xylan and xylan side-chains, but also hydrolyze carboxymethyl cellulose (CMC). Csac_1076-Csac_1080 encodes several multi-domain, extracellular glycoside hydrolases (GH). Within this locus is CelB (Csac_1078), a 118 kDa enzyme so far unique to C. saccharolyticus, constructed of both a GH10 and GH5 domain separated by a family 3 carbohydrate-binding module (CBM). CelB hydrolyzed xylan and CMC, as well as barley beta-glucan, glucomannan and arabinoxylan. CelB transcripts were among the most highly transcribed (top 10%) in C. saccharolyticus during growth on switchgrass and poplar.;Given the physiological and biochemical characteristics of Csac , this bacterium has the potential for consolidated bioprocessing (biomass deconstruction and conversion to H2 by a single microorganism) and merits additional study in expanding efforts to replace petroleum with biofuels produced from renewable feedstocks.
机译:不断上涨的能源价格,石油储备的枯竭和全球变暖已将可再生燃料的开发列为国家优先事项。分子氢作为一种运输燃料几乎可以替代乙醇,因为它只能产生水作为副产物。微生物中氢气是一种有前途的途径,因为它比传统的化学或电化学过程对环境的影响小。嗜热产双歧分解杆菌(Csac)是一种极热的细菌,它从含有纤维素,半纤维素和果胶的植物生物质中产生氢。为了从优化生物能源产量的角度了解这种微生物的生长生理学,对Csac基因组进行了测序,并开发并实施了全基因组寡核苷酸微阵列。 Csac的研究重点是植物生物量的解构。先前的研究表明,该细菌可共同发酵葡萄糖和木糖,而没有碳分解代谢物阻遏(CCR),这是一种有吸引力的生理特性,因为这两种糖是木质纤维素水解产物的主要成分。在此,在葡萄糖,木糖,半乳糖,果糖,甘露糖和阿拉伯糖以及所有六个单糖的混合物上的生长表明,Csac优选果糖(己糖)和木糖和阿拉伯糖(两种戊糖)。在单糖混合物上生长期间,未发现CCR的微生物学或转录组学证据。单糖和半纤维素上生长的转录组被用于预测Csac基因组中鉴定的24种推定的碳水化合物ATP结合盒(ABC)转运蛋白和一种磷酸转移酶系统(PTS)的大多数的糖底物。广泛的生长底物偏好,ABC糖转运蛋白的多样性以及随之而来的CCR缺乏支持Csac解构植物生物量的能力。Csac和其他类似生物的另一个显着特征是新型多域糖苷水解酶的存在。这也可以归因于Csac基因组中两个含糖苷水解酶(GH)的基因座(Csac_1076-Csac_1080和Csac_2404-2411)。 Csac_2404-Csac_2411编码细胞内和细胞外GH10糖苷水解酶,发现它们不仅分解木聚糖和木聚糖侧链,而且还水解羧甲基纤维素(CMC)。 Csac_1076-Csac_1080编码多个多域胞外糖苷水解酶(GH)。 CelB(Csac_1078)是该基因座内的一种酶,到目前为止,它是唯一的解糖梭菌,由被第3族碳水化合物结合模块(CBM)隔开的GH10和GH5结构域构成。 CelB水解木聚糖和CMC,以及大麦β-葡聚糖,葡甘露聚糖和阿拉伯木聚糖。在柳枝s和杨树上生长期间,CelB转录物是解糖梭菌中转录最高的(排在前10%)。单一微生物)并值得进一步研究,以扩大由可再生原料生产的生物燃料替代石油的努力。

著录项

  • 作者

    VanFossen, Amy Lynne.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 238 p.
  • 总页数 238
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号