首页> 外文学位 >Characterization of fluid and thermal transport in copper metal foam wicks.
【24h】

Characterization of fluid and thermal transport in copper metal foam wicks.

机译:铜金属泡沫芯中流体和热传递的特征。

获取原文
获取原文并翻译 | 示例

摘要

Thermal management of electronics has become a major challenge in manufacturing and production of high performance electronic chips. Constant rise of computation power requires higher amount of energy and subsequently this energy (in the form of heat) should be transferred out of the computer. Among other solutions, heat pipes are proposed as a means to transfer and eventually remove this excess heat. The main part of a typical heat pipe is the wick which provides a medium for transport of capillary driven flow and evaporation at the vapor-liquid interface. Different materials are proposed as wick for a heat pipe and among them, recently invented Bi-porous metal foams exhibit a very significant performance improve, i.e. high transport limit in comparison with competing materials. By a mainly experimental approach, capillary, wetting and evaporation properties of copper metal foams with different porosities have been investigated. An in depth surface characterization study is done on the foams to identify the role of surface wettability on the capillary performance. It is found for the first time that the hydrophilicity loss of the copper based porous materials when exposed to air is caused by the adsorption of volatile organic compounds and not by copper oxidation. It is also inferred that the reason for high transport limit of the foams compared with other materials is their unique microstructure which has two levels of porosity. This biporous microstructure provides paths for liquid transport with low pressure drop while the smaller pores provide for thin film evaporation and produce high capillary pressure. Permeability and effective pore radius, as two key parameters defining the pumping capacity, are measured experimentally by the rate of rise method. It is also found that the evaporation rate of a rising liquid in a porous material is lower compared with that of the same material while saturated with stationary liquid. This will allow ignoring natural evaporation in the rate of rise method and using simplified models to capture permeability and effective pore radius. The role of meniscus recession in capillary pumping and evaporation rate is characterized for the first time and a model is proposed to measure the effective pore radius of porous materials in operating conditions. It is shown that the effective pore radius can decrease up to 50% due to forced evaporation. In a more general perspective, through different experiments, it is shown that there is a coupling between capillarity and evaporation. This coupling is established through variation in meniscus shape which will affect both capillarity and evaporation. The findings of this thesis will shed light on the capillarity, evaporation and their interconnected nature in the capillary wicks in two phase thermal management devices.;Key words: capillarity, evaporation, metal foam, heat pipe, wick.
机译:电子器件的热管理已成为高性能电子芯片制造和生产中的主要挑战。不断提高的计算能力需要更多的能量,随后,该能量(以热的形式)应从计算机中转移出去。在其他解决方案中,提出了热管作为一种传递和最终消除这种多余热量的手段。典型的热管的主要部分是吸液芯,该吸液芯提供了一种介质,用于在气液界面处传输毛细管驱动的流动和蒸发。提出了不同的材料作为热管的芯,其中,最近发明的双孔金属泡沫表现出非常显着的性能改进,即与竞争材料相比具有高的运输极限。通过主要的实验方法,研究了具有不同孔隙率的铜泡沫金属的毛细管,润湿和蒸发性能。对泡沫进行了深入的表面表征研究,以确定表面润湿性对毛细管性能的作用。首次发现,暴露于空气中的铜基多孔材料的亲水性损失是由挥发性有机化合物的吸附而不是由铜的氧化引起的。还可以推断,与其他材料相比,泡沫的运输极限高的原因是其独特的微观结构,其具有两个孔隙率水平。这种双孔微结构为液体的输送提供了低压降的路径,而较小的孔为薄膜提供了蒸发并产生了较高的毛细管压力。渗透率和有效孔隙半径是确定抽水能力的两个关键参数,通过上升速率法进行实验测量。还发现与饱和液体饱和的相同材料相比,多孔材料中上升液体的蒸发速率更低。这将可以忽略上升速率法中的自然蒸发,而使用简化的模型来捕获渗透率和有效孔隙半径。首次表征了弯液面退缩在毛细管泵送和蒸发速率中的作用,并提出了一种在工作条件下测量多孔材料有效孔径的模型。结果表明,有效孔隙半径由于强制蒸发而最多可降低50%。从更一般的角度来看,通过不同的实验表明,毛细管现象和蒸发之间存在耦合。这种耦合是通过弯月面形状的变化而建立的,该变化会影响毛细作用和蒸发。本论文的发现将揭示两相热管理装置中毛细芯的毛细作用,蒸发及其相互联系的性质。关键词:毛细作用,蒸发,金属泡沫,热管,毛细作用

著录项

  • 作者单位

    Universite de Sherbrooke (Canada).;

  • 授予单位 Universite de Sherbrooke (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号