首页> 外文学位 >Distributed time synchronization from relative measurement in mobile wireless sensor networks.
【24h】

Distributed time synchronization from relative measurement in mobile wireless sensor networks.

机译:来自移动无线传感器网络中相对测量的分布式时间同步。

获取原文
获取原文并翻译 | 示例

摘要

A wireless sensor network (WSN) consists of a set of devices (nodes) with sensing, data processing, and communicating components. They can monitor surrounding physical or environmental information, and collaborate to process such information. They have been used in a variety of applications, such as habitat and environment monitoring, health care, military surveillance, industrial machinery surveillance, home automation and so on. In many of those applications, nodes in sensor networks are mobile. Clock synchronization is critical for the effective use of sensor networks; particularly in applications such as range finding for target tracking and localization, intrusion detection, time correlation of telemetry data, sensor fusion, slot assignment in TDMA, duty cycling protocols, and so on. The problem of clock synchronization indeed has been widely investigated. Most algorithms are designed and tested in static networks, while little attention has been paid to that in mobile networks. In mobile networks, the communication links among networks varies frequently due to changes in inter-node distance and obstacles, which may affect the performance of algorithms designed for static networks.;At a given global time t, the local clock time at node u can be approximately written as tauu(t) = alphaut + betau, where alphau is the skew and betau is the offset. The global time to which all nodes need to be synchronized can be the local clock time at an arbitrarily chosen "reference" node. The time synchronization problem is effectively a problem of estimating the skews and offsets of every node, since the nodes can infer the global time from their local clock times once they know their own skew and offset estimates.;It is not possible for a node to measure its skew and offset directly. However, it is possible for a pair of neighbors to measure the noisy relative difference between their offsets and logarithm of skews by exchanging a number of time stamped messages. We show the existing protocols to perform so-called pairwise synchronization [1--5] can be used to obtain such relative measurements in Chapter 2. The focus of this work is how to achieve network-wide synchronization, i.e., estimate skews and offsets of clocks in nodes from these relative measurements. In Chapter 3 and Chapter 4, two different distributed algorithms are proposed, with which each node can estimate its offset/skew from these noisy relative measurements by communicating only with its neighbors. The algorithms are simple and easy to implement. The convergence of the two algorithms is guaranteed under certain conditions. They are also shown to be robust to measurement noise and time-varying network topologies. The first algorithm (JAT) was inspired by the existing Jacobi type of algorithms for skews and/or offsets estimation [6--10]. The algorithm ensures that the mean of estimation error converges to zero (if relative measurements are unbiased) and variance to a limiting value. The second algorithm (STO) was inspired by stochastic approximation type of consensus principles [11, 12]. It performs better than JAT algorithm in terms of the estimation of the global time as it ensures the variance of skew estimation error converges to zero. Furthermore, we also compare the two proposed algorithm with the state-of-the-art ATS algorithm [13] in terms of synchronization error that is the maximum absolute difference of time estimates of all pairs of nodes in networks. STO achieves better accuracy while its convergence rate is relatively slow. We then provide methods to improve the convergence rate and corresponding numerical validation.
机译:无线传感器网络(WSN)由具有感应,数据处理和通信组件的一组设备(节点)组成。他们可以监视周围的物理或环境信息,并协作处理此类信息。它们已用于各种应用程序中,例如栖息地和环境监视,医疗保健,军事监视,工业机械监视,家庭自动化等。在许多这些应用中,传感器网络中的节点是移动的。时钟同步对于有效使用传感器网络至关重要。特别是在诸如用于目标跟踪和定位的测距,入侵检测,遥测数据的时间相关性,传感器融合,TDMA中的时隙分配,占空比协议等应用中。时钟同步的问题确实已经被广泛研究。大多数算法是在静态网络中设计和测试的,而很少关注移动网络中的算法。在移动网络中,由于节点间距离和障碍物的变化,网络之间的通信链路经常变化,这可能会影响为静态网络设计的算法的性能。在给定的全局时间t处,节点u的本地时钟时间可以近似写为tauu(t)= alphaut + betau,其中alphau是偏斜,betau是偏移量。所有节点需要同步到的全局时间可以是任意选择的“参考”节点上的本地时钟时间。时间同步问题实际上是估计每个节点的偏斜和偏移的问题,因为一旦节点知道了自己的偏斜和偏移估计,就可以从其本地时钟时间推断出全局时间。直接测量其偏斜和偏移量。但是,一对邻居可以通过交换许多带时间戳的消息来测量其偏移量和偏斜对数之间的噪声相对差异。在第2章中,我们将展示执行所谓的成对同步[1--5]的现有协议可用于获得此类相对测量。这项工作的重点是如何实现全网同步,即估计偏斜和偏移这些相对测量得出的节点时钟数。在第3章和第4章中,提出了两种不同的分布式算法,每个节点可通过仅与邻居通信来从这些嘈杂的相对测量值中估计其偏移/偏斜。该算法简单易行。在一定条件下,可以保证两种算法的收敛性。它们还显示出对测量噪声和时变网络拓扑的鲁棒性。第一个算法(JAT)受现有的Jacobi类型的偏斜和/或偏移估计算法启发[6--10]。该算法可确保估计误差的平均值收敛到零(如果相对测量无偏)并且方差收敛到极限值。第二种算法(STO)受共识原则的随机近似类型启发[11,12]。就全局时间的估计而言,它比JAT算法表现更好,因为它确保了偏斜估计误差的方差收敛到零。此外,就同步误差而言,我们还将两种提出的算法与最新的ATS算法进行比较[13],同步误差是网络中所有节点对的时间估计的最大绝对差。 STO的精度较高,而收敛速度相对较慢。然后,我们提供提高收敛速度的方法和相应的数值验证。

著录项

  • 作者

    Liao, Chenda.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Computer Science.;Engineering Electronics and Electrical.;Engineering Computer.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号