首页> 外文学位 >Thermal Stability of Nanocrystalline Alloys by Solute Additions and A Thermodynamic Modeling.
【24h】

Thermal Stability of Nanocrystalline Alloys by Solute Additions and A Thermodynamic Modeling.

机译:溶质添加和热力学建模对纳米晶合金的热稳定性。

获取原文
获取原文并翻译 | 示例

摘要

Nanocrystalline alloys show superior properties due to their exceptional microstructure. Thermal stability of these materials is a critical aspect. It is well known that grain boundaries in nanocrystalline microstructures cause a significant increase in the total free energy of the system. A driving force provided to reduce this excess free energy can cause grain growth. The presence of a solute addition within a nanocrystalline alloy can lead to the thermal stability. Kinetic and thermodynamic stabilization are the two basic mechanisms with which stability of a nanoscale grain size can be achieved at high temperatures. The basis of this thesis is to study the effect of solute addition on thermal stability of nanocrystalline alloys.;The objective is to determine the effect of Zr addition on the thermal stability of mechanically alloyed nanocrysatillne Fe-Cr and Fe-Ni alloys. In Fe-Cr-Zr alloy system, nanoscale grain size stabilization was maintained up to 900 °C by adding 2 at% Zr. Kinetic pinning by intermetallic particles in the nanoscale range was identified as a primary mechanism of thermal stabilization. In addition to the grain size strengthening, intermetallic particles also contribute to strengthening mechanisms. The analysis of microhardness, XRD data, and measured grain sizes from TEM micrographs suggested that both thermodynamic and kinetic mechanisms are possible mechanisms. It was found that alpha → gamma phase transformation in Fe-Cr-Zr system does not influence the grain size stabilization.;In the Fe-Ni-Zr alloy system, it was shown that the grain growth in Fe-8Ni-1Zr alloy is much less than that of pure Fe and Fe-8Ni alloy at elevated temperatures. The microstructure of the ternary Fe-8Ni-1Zr alloy remains in the nanoscale range up to 700 °C. Using an in-situ TEM study, it was determined that drastic grain growth occurs when the alpha → gamma phase transformation occurs. Accordingly, there can be a synergistic relationship between grain growth and alpha → gamma phase transformation in Fe-Ni-Zr alloys.;In addition to the experimental study of thermal stabilization of nanocrystalline Fe-Cr-Zr or Fe-Ni-Zr alloys, the thesis presented here developed a new predictive model, applicable to strongly segregating solutes, for thermodynamic stabilization of binary alloys. This model can serve as a benchmark for selecting solute and evaluating the possible contribution of stabilization. Following a regular solution model, both the chemical and elastic strain energy contributions are combined to obtain the mixing enthalpy. The total Gibbs free energy of mixing is then minimized with respect to simultaneous variations in the grain boundary volume fraction and the solute concentration in the grain boundary and the grain interior. The Lagrange multiplier method was used to obtained numerical solutions. Application are given for the temperature dependence of the grain size and the grain boundary solute excess for selected binary system where experimental results imply that thermodynamic stabilization could be operative.;This thesis also extends the binary model to a new model for thermodynamic stabilization of ternary nanocrystalline alloys. It is applicable to strongly segregating size-misfit solutes and uses input data available in the literature. In a same manner as the binary model, this model is based on a regular solution approach such that the chemical and elastic strain energy contributions are incorporated into the mixing enthalpy DeltaHmix, and the mixing entropy DeltaSmix is obtained using the ideal solution approximation. The Gibbs mixing free energy Delta Gmix is then minimized with respect to simultaneous variations in grain growth and solute segregation parameters. The Lagrange multiplier method is similarly used to obtain numerical solutions for the minimum Delta Gmix. The temperature dependence of the nanocrystalline grain size and interfacial solute excess can be obtained for selected ternary systems. As an example, model predictions are compared to experimental results for Fe-Cr-Zr and Fe-Ni-Zr alloy systems.;Consistency between the experimental results and the present model predictions provide a more rigorous criterion for investigating thermal stabilization. However, other possible contributions for grain growth stabilization should still be considered.
机译:纳米晶合金由于其卓越的微观结构而具有优越的性能。这些材料的热稳定性是至关重要的方面。众所周知,纳米晶微结构中的晶界引起系统总自由能的显着增加。为减少这种多余的自由能而提供的驱动力会导致晶粒长大。纳米晶体合金中溶质的存在会导致热稳定性。动力学和热力学稳定性是在高温下可以实现纳米级晶粒尺寸稳定性的两个基本机理。本论文的基础是研究溶质添加对纳米晶合金热稳定性的影响。目的是确定Zr添加对机械合金化纳米晶Fe-Cr和Fe-Ni合金热稳定性的影响。在Fe-Cr-Zr合金系统中,通过添加2 at%Zr,可将纳米级晶粒尺寸稳定在900°C以下。纳米级范围内的金属间化合物的动力学钉扎被确定为热稳定的主要机理。除晶粒尺寸增强外,金属间颗粒也有助于增强机制。对显微硬度,XRD数据和通过TEM显微照片测得的晶粒尺寸的分析表明,热力学和动力学机制都是可能的机制。发现Fe-Cr-Zr体系中α→γ相变不影响晶粒尺寸的稳定。;在Fe-Ni-Zr合金体系中,Fe-8Ni-1Zr合金的晶粒长大为在高温下比纯Fe和Fe-8Ni合金要少得多。 Fe-8Ni-1Zr三元合金的微观结构保持在高达700°C的纳米范围内。使用原位TEM研究,确定了当发生α→γ相转变时发生了急剧的晶粒生长。因此,在Fe-Ni-Zr合金中晶粒长大与α→γ相变之间可能存在协同关系。除了对纳米晶Fe-Cr-Zr或Fe-Ni-Zr合金进行热稳定化的实验研究之外,本文提出了一种新的预测模型,该模型适用于强分离溶质,用于二元合金的热力学稳定化。该模型可以作为选择溶质和评估稳定作用的基准。按照常规的求解模型,将化学能和弹性应变能的贡献结合起来以获得混合焓。然后相对于晶界体积分数和晶界和晶粒内部的溶质浓度的同时变化,使混合的总吉布斯自由能最小化。拉格朗日乘数法用于获得数值解。给出了对二元体系晶粒尺寸和晶界溶质过量的温度依赖性的应用,实验结果表明该二元体系具有热力学稳定性。;本文还将二元模型扩展为三元纳米晶体热力学稳定性的新模型。合金。它适用于强烈分离大小不匹配的溶质,并使用文献中提供的输入数据。以与二元模型相同的方式,该模型基于常规求解方法,从而将化学和弹性应变能贡献纳入混合焓DeltaHmix中,并使用理想解近似值获得混合熵DeltaSmix。然后,就晶粒生长和溶质偏析参数的同时变化而言,使吉布斯混合自由能Delta Gmix最小化。拉格朗日乘数法类似地用于获得最小Delta Gmix的数值解。对于选定的三元体系,可以获得纳米晶粒尺寸和界面溶质过量的温度依赖性。例如,将模型预测与Fe-Cr-Zr和Fe-Ni-Zr合金系统的实验结果进行比较。;实验结果与当前模型预测之间的一致性为研究热稳定性提供了更严格的标准。但是,仍应考虑为稳定谷物生长做出其他可能的贡献。

著录项

  • 作者

    Saber, Mostafa.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Nanotechnology.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号