首页> 外文学位 >Algorithmic approaches to high speed atomic force microscopy.
【24h】

Algorithmic approaches to high speed atomic force microscopy.

机译:高速原子力显微镜的算法方法。

获取原文
获取原文并翻译 | 示例

摘要

The atomic force microscope (AFM) has a unique set of capabilities for investigating biological systems, including sub-nanometer spatial resolution and the ability to image in liquid and to measure mechanical properties. Acquiring a high quality image, however, can take from minutes to hours. Despite this limited frame rate, researchers use the instrument to investigate dynamics via time-lapse imaging, driven by the need to understand biomolecular activities at the molecular level. Studies of processes such as DNA digestion with DNase, DNA-RNA polymerase binding and RNA transcription from DNA by RNA polymerase redefined the potential of AFM in biology. As a result of the need for better temporal resolution, advanced AFMs have been developed. The current state of the art in high-speed AFM (HS-AFM) for biological studies is an instrument developed by Toshio Ando at Kanazawa University in Japan. This instrument can achieve 12 frames/sec and has successfully visualized the motion of protein motors at the molecular level. This impressive instrument as well as other advanced AFMs, however, comes with tradeoffs that include a small scan size, limited imaging modes and very high cost. As a result, most AFM users still rely on standard commercial AFMs. The work in this thesis develops algorithmic approaches that can be implemented on existing instruments, from standard commercial systems to cutting edge HS-AFM units, to enhance their capabilities.;There are four primary contributions in this thesis. The first is an analysis of the signals available in an AFM with respect to the information they carry and their suitability for imaging at different scan speeds. The next two are algorithmic approaches to HS-AFM that take advantage of these signals in different ways. The first algorithm involves a new sample profile estimator that yields accurate topology at speeds beyond the bandwidth of the limiting actuator. The second involves more efficient sampling, using the data in real time to steer the tip. Both algorithms yield at least an order of magnitude improvement in imaging rate but with different tradeoffs. The first operates beyond the bandwidth of the controller managing the tip-sample interaction and therefore the applied force is not well-regulated. The second keeps this control intact but is effective only on a limited set of samples, namely biopolymers or other string-like samples. Experiments on calibration samples and lambda-DNA show that both of the algorithms improve the imaging rate by an order of magnitude. In the fourth contribution, extended applications of AFMs equipped with the algorithmic approaches are the tracking of a macromolecule moving along a string-like sample and a time optimal path for repetitive non-raster scans along string-like samples.
机译:原子力显微镜(AFM)具有一套独特的用于研究生物系统的功能,包括亚纳米级的空间分辨率以及在液体中成像和测量机械性能的能力。但是,获取高质量图像可能需要几分钟到几小时。尽管帧速率受到限制,但由于需要了解分子水平的生物分子活动,研究人员仍使用该仪器通过延时成像来研究动力学。对诸如用DNase进行DNA消化,DNA-RNA聚合酶结合以及通过RNA聚合酶从DNA转录RNA的过程的研究重新定义了AFM在生物学中的潜力。由于需要更好的时间分辨率,因此已经开发了先进的AFM。用于生物研究的高速原子力显微镜(HS-AFM)的最新技术是日本金泽大学的安藤俊雄(Toshio Ando)开发的仪器。该仪器可以达到12帧/秒,并且已经成功地在分子水平上可视化了蛋白质运动的运动。然而,这款令人印象深刻的仪器以及其他先进的AFM具有一些折衷,包括较小的扫描尺寸,有限的成像模式和非常高的成本。结果,大多数AFM用户仍然依赖于标准的商用AFM。本文的工作是开发可以在现有仪器上实现的算法方法,从标准的商用系统到最先进的HS-AFM单元,以增强其功能。;本文有四个主要贡献。首先是针对AFM中可携带的信号及其所携带的信息及其在不同扫描速度下成像的适用性进行分析。接下来的两种是HS-AFM的算法方法,它们以不同的方式利用了这些信号。第一种算法涉及一个新的样本轮廓估计器,该估计器以超出限制执行器带宽的速度产生准确的拓扑。第二种方法是更有效的采样,使用实时数据操纵尖端。两种算法在成像速率上至少提高了一个数量级,但具有不同的权衡。第一个操作超出了管理尖端样品相互作用的控制器的带宽,因此施加的力没有得到很好的调节。第二个保持完整,但仅对有限的一组样本有效,即生物聚合物或其他串状样本。校准样品和λ-DNA的实验表明,这两种算法均将成像速率提高了一个数量级。在第四项贡献中,配备有算法方法的AFM的扩展应用是跟踪沿着字符串样例移动的大分子以及沿着字符串样例进行重复非光栅扫描的时间最佳路径。

著录项

  • 作者

    Huang, Peng.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Engineering Mechanical.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号