首页> 外文学位 >Advanced applications of cosmic-ray muon radiography.
【24h】

Advanced applications of cosmic-ray muon radiography.

机译:宇宙射线μ子射线照相术的先进应用。

获取原文
获取原文并翻译 | 示例

摘要

The passage of cosmic-ray muons through matter is dominated by the Coulomb interaction with electrons and atomic nuclei. The muon's interaction with electrons leads to continuous energy loss and stopping through the process of ionization. The muon's interaction with nuclei leads to angular diffusion. If a muon stops in matter, other processes unfold, as discussed in more detail below. These interactions provide the basis for advanced applications of cosmic-ray muon radiography discussed here, specifically: 1) imaging a nuclear reactor with near horizontal muons, and 2) identifying materials through the analysis of radiation lengths weighted by density and secondary signals that are induced by cosmic-ray muon trajectories.;We have imaged a nuclear reactor, type AGN-201m, at the University of New Mexico, using data measured with a particle tracker built from a set of sealed drift tubes, the Mini Muon Tracker (MMT). Geant4 simulations were compared to the data for verification and validation. In both the data and simulation, we can identify regions of interest in the reactor including the core, moderator, and shield. This study reinforces our claims for using muon tomography to image reactors following an accident.;Warhead and special nuclear materials (SNM) imaging is an important thrust for treaty verification and national security purposes. The differentiation of SNM from other materials, such as iron and aluminum, is useful for these applications. Several techniques were developed for material identification using cosmic-ray muons. These techniques include: 1) identifying the radiation length weighted by density of an object and 2) measuring the signals that can indicate the presence of fission and chain reactions. By combining the radiographic images created by tracking muons through a target plane with the additional fission neutron and gamma signature, we are able to locate regions that are fissionable from a single side. The following materials were imaged with this technique: aluminum, concrete, steel, lead, and uranium. Provided that there is sufficient mass, U-235 could be differentiated from U-238 through muon induced fission.
机译:宇宙射线μ子通过物质的通道主要是与电子和原子核发生的库仑相互作用。介子与电子的相互作用导致能量连续损失,并在电离过程中停止。介子与原子核的相互作用导致角扩散。如果μ子在物质中停止,则其他过程将会展开,如下面更详细地讨论。这些相互作用为这里讨论的宇宙射线μ子射线照相的高级应用提供了基础,特别是:1)用近水平的μ子对核反应堆成像,以及2)通过分析由密度和感应的二次信号加权的辐射长度来识别材料我们已经用新的大学成像了一个新的AGN-201m型核反应堆,它使用的是由一套由密闭漂移管组成的粒子跟踪器测量的数据,该跟踪器是由一套密封的漂移管,即Mini Muon Tracker(MMT)制成的。 。将Geant4模拟与数据进行比较以进行验证和确认。在数据和仿真中,我们都可以确定电抗器中感兴趣的区域,包括堆芯,减速器和护罩。这项研究进一步证实了我们在事故发生后使用μ子断层成像技术对反应堆成像的主张。战斗部和特殊核材料(SNM)成像是条约核查和国家安全目的的重要方向。 SNM与其他材料(例如铁和铝)的区别对于这些应用很有用。已经开发了几种使用宇宙射线μ子进行材料识别的技术。这些技术包括:1)确定以物体密度加权的辐射长度,以及2)测量可以指示裂变和链反应存在的信号。通过将跟踪μ子穿过目标平面而产生的放射线图像与附加裂变中子和伽玛签名相结合,我们能够定位从单侧可裂变的区域。使用该技术对以下材料进行了成像:铝,混凝土,钢,铅和铀。只要有足够的质量,U-235可以通过介子诱导裂变与U-238区分。

著录项

  • 作者

    Perry, John.;

  • 作者单位

    The University of New Mexico.;

  • 授予单位 The University of New Mexico.;
  • 学科 Engineering Nuclear.;Physics Radiation.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 229 p.
  • 总页数 229
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号