首页> 外文学位 >Reducing Disruptive Effects of Patient No-shows: A Scheduling Approach.
【24h】

Reducing Disruptive Effects of Patient No-shows: A Scheduling Approach.

机译:减少患者缺席的干扰性:一种计划方法。

获取原文
获取原文并翻译 | 示例

摘要

Appointment scheduling systems have been studied for nearly 60 years. From a decision making point of view, related problems can be classified into two categories: static and dynamic. In a static scheduling problem, all decisions are made before a clinic session starts; in a dynamic scheduling problem, the schedule of future arrivals is revised constantly during the clinic session. I categorize my problem as static. Within the research field of static appointment scheduling, little attention has been paid to patient no-show until the past decade. As an important aspect of patient arrival behaviors, the phenomenon of patient no-show has resulted in huge economic loss industry wide. I aim to explore static scheduling approaches to alleviate negative effects of patient no-show, with consideration of nonhomogeneous patients, overbooking, and nonconventional patient waiting cost structure. One primary contribution of this dissertation is a static analytical model I developed for the problem of scheduling patients to queues with consideration of quadratic patient waiting costs, nonhomogeneous patient no-show probabilities, and nonhomogeneous patient waiting cost ratios. By relaxing the assumptions of constant and identical no-show probabilities and waiting cost ratios, Hassin and Mendel's [25] model becomes a special case of my model. Another major contribution lies in my study on a set of heuristics that sequence patients based on their no-show probabilities. My numerical studies on three heuristics suggest scheduling patients with higher no-show probabilities in front of patients with lower no-show probabilities. It achieves best overall system performance as well as patient waiting performance. Last, I integrated the static model with a nonconventional overbooking strategy to formulate a problem with a hybrid overbooking model which not only determines number of patients to schedule but also determines scheduled inter-arrival times. It enables outpatients, inpatients, and emergency patients to be considered within a static scheduling environment. By comparing performances of three booking heuristics, I recommend scheduling inpatients first when no-show probability is low, while scheduling outpatients first when no-show probability is high. Patient waiting is reported to be an important index of patient satisfaction in various surveys. Almost all appointment scheduling studies assume a linear relationship between patient waiting cost and patient waiting time, which might not be correct. The waiting cost of a system with one patient waiting for 40 minutes is not equal to another one with 20 patients each waiting for 2 minutes [34]. Furthermore, it also involves issues of goodwill, service, and "costs to the society", which place a value on patients' waiting time [8]. Therefore, a nonlinear cost structure of patient waiting is desired. To control the complexity of target problems, a majority of the static scheduling literature assumes homogenous patients, which might be oversimplified. For the same amount of waiting time, waiting cost varies from one patient to another, due to various occupations held by different patients. Similarly, no-show probability needs to be patient specific as it's determined by various patient level attributes (Age, sex, marital status, income, appointment delay, etc.). I solve a static scheduling problem with patient no-show probability varied among patients. To represent the nonlinear nature of the relationship between waiting cost and patient waiting time, I formulate the objective function as a total of quadratic patient waiting cost and linear sever idle cost. By comparing it to a model with linear waiting cost, I find quadratic waiting cost may change my decision of sequencing patients when no-show probability is nonhomogeneous. I solve another problem with both patient no-show probability and patient waiting cost ratio varied among patients, and compare the performance of three no-show probability based booking heuristics: lower no-show first, higher no-show first, and higher no-show in the middle, with the purpose of providing simplified heuristics to medical scheduling practices. Next, I address a daily scheduling problem of allocating relatively flexible diagnostic capacities among three categories of patients: inpatients, who have low level of no-show probability and waiting cost ratio; outpatients, who have medium level of no-show probability and waiting cost ratio; and emergency patients, who usually show up as walk-in, with extremely high waiting cost ratio. To incorporate walk-in emergency patients into the model, I employ an overbooking strategy with server overtime allowed. The objective is to maximize system performance in terms of net revenue which consists of service revenue, server idle cost, patient waiting cost, and patient deny penalty cost. I analyze the model from three perspectives: behavior of optimal schedules, overall system performance, and customer experience. To make the model easy to apply, I analyze the model performances under three heuristic booking strategies: all outpatient, inpatient first and outpatient first, with three environmental factors (outpatient no-show probability, equipment hourly idle cost, and inpatient service fee) are varied. The system is found to perform better when server hourly idle cost is greater. This phenomenon is more significant when outpatient no-show probability is relatively low. For clinics which also schedule inpatients, I recommend using the inpatient first policy when outpatient no-show probability is low; and using outpatient first policy when outpatient no-show probability is high. To a certain extent, overbooking can alleviate the negative effects brought by patient no-show, but system performance still decreases as no-show probability increases.
机译:预约调度系统已经研究了近60年。从决策的角度来看,相关问题可以分为两类:静态和动态。在静态计划问题中,所有决定都是在诊所会议开始之前做出的;在动态计划问题中,在诊所会议期间不断修订未来到达计划。我将我的问题归类为静态问题。在静态约会调度的研究领域中,直到最近十年才很少关注患者的缺席。作为患者到来行为的重要方面,患者缺席现象已导致整个行业的巨大经济损失。我的目的是探索静态调度方法,以减轻不出现患者的负面影响,同时考虑非同质患者,超额预定和非常规患者等待费用的结构。本论文的主要贡献是我开发了一种静态分析模型,用于考虑患者排队费用的二次方,患者未出现概率的不均一性和患者等待费用率不均一的问题来安排患者排队。通过放松恒定且相同的未出现概率和等待成本比率的假设,Hassin和Mendel的[25]模型成为我模型的特例。另一个主要贡献在于我对一组启发式方法的研究,这些启发式方法根据患者的未出现概率对患者进行排序。我对三种启发式方法的数值研究表明,将出现率较高的患者安排在出现率较低的患者之前。它实现了最佳的整体系统性能以及患者等待性能。最后,我将静态模型与非常规超额预订策略集成在一起,用混合超额预订模型提出了一个问题,该模型不仅确定了要安排的患者数量,而且还确定了计划的到达间隔时间。它使门诊病人,住院病人和急诊病人可以在静态调度环境中考虑。通过比较三种预约启发式算法的性能,我建议在未出现概率较低的情况下首先安排住院病人,而在未出现概率较高的情况下首先安排住院病人。据报道,在各种调查中,患者等待是患者满意度的重要指标。几乎所有约会安排研究都假设患者等待成本和患者等待时间之间存在线性关系,这可能是不正确的。一个患者等待40分钟的系统的等待成本不等于另一个20个患者等待2分钟的系统的等待成本[34]。此外,它还涉及商誉,服务和“社会成本”等问题,这些都对患者的等待时间产生了价值[8]。因此,需要患者等待的非线性费用结构。为了控制目标问题的复杂性,大多数静态调度文献都假设患者是同质的,这可能被简化了。对于相同数量的等待时间,由于不同患者从事的职业不同,因此每个患者的等待成本各不相同。同样,未出现的概率也需要针对患者,因为它由各种患者级别的属性(年龄,性别,婚姻状况,收入,约会延迟等)确定。我解决了一个静态调度问题,患者的未出现概率在患者之间有所不同。为了表示等待成本和患者等待时间之间关系的非线性性质,我将目标函数表述为二次患者等待成本和线性服务器闲置成本的总和。通过将其与具有线性等待成本的模型进行比较,我发现当未出现概率不均匀时,二次等待成本可能会改变我对患者进行测序的决定。我解决了另一个问题,即患者的未出现概率和患者的等待费用比率在患者之间有所不同,并比较了三种基于未出现概率的预订试探法的性能:较低的未出现优先,较高的未出现优先和较高的未出现在中间显示,目的是为医疗调度实践提供简化的启发式方法。接下来,我要解决一个日常调度问题,即在三类患者中分配相对灵活的诊断能力:住院患者,其出现率和等待成本比很低;门诊病人的出现率和等待费用比率中等,处于中等水平;和急诊病人,通常都是步入式的,等待成本比很高。为了将急诊病人纳入模型,我采用了允许服务器超时的超额预订策略。目的是在包括服务收入,服务器闲置成本,患者等待成本和患者拒绝罚款成本的净收入方面,使系统性能最大化。我从三个角度分析模型:最佳计划的行为,整体系统性能以及客户体验。为了使模型易于应用,我分析了三种启发式预订策略下的模型性能:所有门诊,住院优先和门诊优先,并具有三个环境因素(门诊未出现概率,设备每小时闲置成本和住院服务费)多变。当服务器每小时的闲置成本较大时,发现该系统的性能更好。当门诊未出现机率相对较低时,这种现象更为明显。对于也安排住院时间的诊所,我建议在门诊未出现机率低的情况下使用住院优先策略。在门诊未出现机率很高的情况下,请使用门诊优先策略。在一定程度上,超额预订可以减轻患者未出现就诊带来的负面影响,但是随着未出现的可能性增加,系统性能仍然会下降。

著录项

  • 作者

    Fu, Mingang.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Operations Research.;Engineering Industrial.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号