首页> 外文学位 >Resonance surface plasmon spectroscopy by tunable enhanced light transmission through nanostructured gratings and thin films.
【24h】

Resonance surface plasmon spectroscopy by tunable enhanced light transmission through nanostructured gratings and thin films.

机译:通过可调谐增强的光通过纳米结构的光栅和薄膜的透射,实现共振表面等离子体激元光谱。

获取原文
获取原文并翻译 | 示例

摘要

Surface plasmon resonance (SPR) is a powerful tool in probing interfacial events in that any changes of effective refractive index in the interface directly impact the behavior of surface plasmons, an electromagnetic wave, travelling along the interface. Surface plasmons (SPs) are generated only if the momemtum of incident light matches that of SPs in the interface. This thesis focuses on tuning the behavior of SPs by changing the topology of diffraction gratings, monitoring the thickness of thin films by diffraction gratings, and use of dispersion images to analyze complex optical responses of SPs through diffraction gratings.;Chapter 1 covers the background/principle of SPR, comprehensive literature review, sensor applications, control of SPR spectral responses, and sensitivity of SPR. In Chapter 2, we illustrate a chirped grating with varying surface topology along its spatial position. We demonstrated that the features of nanostructure such as pitch and amplitude significantly impact the behavior of enhanced transmission. In addition, we also illustrate the sensing application of chirped grating and the results indicate that the chirped grating is a sensitive and information rich SPR platform. In chapter 3, we used a commercial DVD diffraction grating as a SPR coupler. A camera-mounted microscope with Bertrend lens attachment is used to observe the enhanced transmission. We demonstrate that this system can monitor the SPR responses and track the thickness of a silicon monoxide film without using a spectrophotometer.;Surface plasmons are a result of collective oscillation of free electrons in the metal/dielectric interface. Thus, the interaction of SPs with delocalized electrons from molecular resonance is complex. In chapter 4, we perform both experimental and simulation works to address this complex interaction. Detailed examination and analysis show nontypical SPR responses. For p-polarized light, a branch of dispersion curve and quenching of SPs in the Q band of zinc phthalocyanine are observed. For both p- and s-polarized light, additional waveguided modes are observed and the wavelength from different guided modes are dispersed.;Diffraction gratings can provide complicated optical information about SPs. Both front side (air/metal) and back side (metal/substrate) provide SPR signals simultaneously. In chapter 5, we use dispersion images to analyze the complicated optical responses of SPR from an asymmetrical diffraction grating consisting of three layers (air/gold/polycarbonate). We illustrate that clear identification of SPR responses from several diffraction orders at front side and back side can be achieved by the use of dispersion images. Theoretical prediction and experimental results show consistency. We also show that only the behavior of SPs from the front side is impacted by the deposition of Langmuir-Blodgett dielectric films.;In chapter 6, we construct a diffraction grating that has a fixed pitch and several amplitudes on its surface by using interference lithography. The purpose of this work is to examine how the amplitude impacts the behavior of transmission peaks. Different amplitudes are successfully fabricated by varying development time in the lithography process. We observed that largest (optimized) enhanced transmission peak shows as the amplitude approach a critical value. Transmission is not maximized below or beyond a critical amplitude. We also found that transmission enhancements are strongly affected by the diffraction efficiencies. A maximum enhancement is observed as diffraction efficiency is largest where amplitude reaches the critical value. The experimental results are then compared to the simulation. (Abstract shortened by UMI.).
机译:表面等离子体激元共振(SPR)是探测界面事件的有力工具,因为界面中有效折射率的任何变化都会直接影响沿界面传播的表面等离子体激元(电磁波)的行为。仅当入射光的模数与界面中SP的模数匹配时,才会生成表面等离子体激元(SP)。本文着重于通过改变衍射光栅的拓扑结构来调整SP的行为,通过衍射光栅监视薄膜的厚度,以及使用色散图像来分析SP通过衍射光栅的复杂光学响应。第1章介绍了背景技术/ SPR的原理,全面的文献综述,传感器应用,SPR光谱响应的控制以及SPR的灵敏度。在第2章中,我们说明了沿其空间位置具有变化的表面拓扑的chi光栅。我们证明了纳米结构的特征(例如音高和振幅)会显着影响增强传输的行为。此外,我们还说明了chi光栅的传感应用,结果表明the光栅是一个灵敏且信息丰富的SPR平台。在第3章中,我们使用了商用DVD衍射光栅作为SPR耦合器。使用带有Bertrend镜头附件的摄像机安装的显微镜观察增强的透射率。我们证明了该系统无需使用分光光度计就可以监测SPR响应并跟踪一氧化硅膜的厚度。表面等离激元是自由电子在金属/介电界面中集体振荡的结果。因此,SP与分子共振引起的离域电子的相互作用是复杂的。在第4章中,我们将同时进行实验和仿真工作,以解决这种复杂的相互作用。详细的检查和分析显示非典型的SPR响应。对于p偏振光,观察到了分散曲线的分支和锌酞菁锌的Q带中SP的猝灭。对于p偏振和s偏振光,都可以观察到其他波导模式,并且可以分散来自不同引导模式的波长。衍射光栅可以提供有关SP的复杂光学信息。正面(空气/金属)和背面(金属/基板)同时提供SPR信号。在第5章中,我们使用色散图像分析了由三层(空气/金/聚碳酸酯)组成的不对称衍射光栅产生的SPR的复杂光学响应。我们说明,通过使用色散图像,可以从正面和背面的几个衍射阶数清楚识别SPR响应。理论预测和实验结果表明一致。我们还表明,仅从正面看SP的行为会受到Langmuir-Blodgett介电膜沉积的影响。在第6章中,我们使用干涉光刻技术构造了在表面上具有固定间距和多个振幅的衍射光栅。 。这项工作的目的是检查振幅如何影响传输峰值的行为。通过改变光刻工艺中的显影时间,可以成功地制造出不同的振幅。我们观察到,最大(优化)的增强传输峰值显示出幅度接近临界值。在临界振幅以下或以外,传输不会最大化。我们还发现,透射效率受衍射效率的影响很大。当振幅达到临界值时,衍射效率最大,观察到最大增强。然后将实验结果与仿真进行比较。 (摘要由UMI缩短。)。

著录项

  • 作者

    Yeh, Wei-Hsun.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Nanotechnology.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号