首页> 外文学位 >Uncertainty quantification in porous media fluid flow.
【24h】

Uncertainty quantification in porous media fluid flow.

机译:多孔介质流体流动的不确定度定量。

获取原文
获取原文并翻译 | 示例

摘要

Reservoir fractures, deformation bands, and multiscale heterogeneities are capable of affecting porous media fluid flow in a variety of ways. In terms of fracture effects, we typically encounter an unchanged or increased permeability when considering flow parallel to a fracture, whereas we expect a reduced permeability when considering flow across a deformation band. In considering multiscale heterogeneities, it is important to capture both the fine scale behavior and general trends of related flow scenarios. For the first portion of this dissertation, we assess the effects that deformation bands have on multi-component fluid flow. Under the assumption that the width of a band is a random variable, Monte Carlo simulations can then be performed to obtain statistical representations of the transport quantity in relation to the nature of uncertainty. We introduce a stochastic perturbation model as an alternative to Monte Carlo simulations and compare the results with analytical solutions. For the next topic, we propose a method for efficient solution of pressure equations with multiscale features and randomly perturbed permeability coefficients. We use the multiscale finite element method (MsFEM) as a starting point and mention that the method is intended to be used within a Monte Carlo framework where solutions corresponding to samples of the randomly perturbed data need to be computed. We show that the proposed method converges to the MsFEM solution in the limit for each individual sample of the data. The method is then applied to a standard multi-phase flow problem where a number of permeability samples are constructed for Monte Carlo simulations. We focus our quantities of interest on the Darcy velocity and breakthrough time and quantify their uncertainty by constructing corresponding cumulative distribution functions. In the final portion of the dissertation, we introduce a dual porosity, dual permeability model which accounts for differences in matrix and fracture parameters. Fine scale benchmark solutions are obtained and we perform a comparison between corresponding dual porosity, dual permeability model solutions. In the context of subsurface characterization of fractured reservoirs, we apply the Markov chain Monte Carlo method to the dual porosity, dual permeability model. In doing so, we obtain matrix and fracture permeability fields resulting from a distribution conditioned to dynamic tracer cut data. In all chapters, a number of numerical examples are presented to illustrate the performance of the each approach.
机译:油藏裂缝,变形带和多尺度非均质性能够以多种方式影响多孔介质流体的流动。就裂缝影响而言,当考虑平行于裂缝的流动时,我们通常会遇到不变或增加的渗透率,而当考虑跨变形带的流动时,我们期望渗透率会降低。在考虑多尺度异质性时,重要的是捕捉精细尺度行为和相关流情景的总体趋势。在本文的第一部分,我们评估了变形带对多组分流体流动的影响。在带的宽度是随机变量的假设下,然后可以执行蒙特卡洛模拟以获得与不确定性有关的传输量的统计表示。我们介绍了一种随机摄动模型,作为蒙特卡洛模拟的替代方法,并将结果与​​解析解进行了比较。对于下一个主题,我们提出一种有效求解具有多尺度特征和随机扰动渗透系数的压力方程的方法。我们使用多尺度有限元方法(MsFEM)作为起点,并提到该方法旨在用于需要计算与随机扰动数据样本对应的解决方案的蒙特卡洛框架内。我们表明,对于每个单独的数据样本,所提出的方法都收敛于MsFEM解决方案。然后将该方法应用于标准多相流问题,在该问题中构造了许多渗透率样本用于蒙特卡洛模拟。我们将感兴趣的量集中在达西速度和突破时间上,并通过构造相应的累积分布函数来量化其不确定性。在论文的最后部分,我们介绍了双重孔隙度,双重渗透率模型,该模型考虑了基质和裂缝参数的差异。获得了精细尺度基​​准解决方案,并且我们在相应的双重孔隙度,双重渗透率模型解决方案之间进行了比较。在裂隙油藏的地下特征描述中,我们将马尔可夫链蒙特卡罗方法应用于双重孔隙度,双重渗透率模型。通过这样做,我们获得了由动态示踪剂切割数据所限定的分布所产生的基质和裂缝渗透率场。在所有章节中,都提供了许多数值示例来说明每种方法的性能。

著录项

  • 作者

    Presho, Michael P.;

  • 作者单位

    University of Wyoming.;

  • 授予单位 University of Wyoming.;
  • 学科 Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号