首页> 外文学位 >Construction of a LBM-DEM Coupling System and its Applications in Modeling Fluid Particle Interaction in Porous Media Flow.
【24h】

Construction of a LBM-DEM Coupling System and its Applications in Modeling Fluid Particle Interaction in Porous Media Flow.

机译:LBM-DEM耦合系统的构建及其在多孔介质流中流体颗粒相互作用建模中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The problem of fluid flow through porous media may be viewed as a two-phase system, i.e., the solid grain skeleton and the pore space, filled with stationary or moving fluids (e.g., air, gas, water, oil, etc). Most porous media flow problems may be reasonably described by a poro-mechanical theory formulated within the framework of a continuum at the macro-scale. However, for the problems such as oil-well sand-production in which the interfacial physics along the solid-fluid interface dominates the performance of the system, the macroscopic averaging method employed in continuum models is not able to catch the primary physical processes due to its low resolution and inability in handling collapsed solid matrix. To capture fluid-solid interaction at the local scale, the grains in the solid skeleton have to be modeled explicitly and the fluid flow in the pore space needs to be simulated at a resolution finer than that of pores and grains.;In this study, the solid skeleton is represented by the assembly of particulate distinct elements in the commercial distinct element method (DEM) code PFC; the pore-scale fluid flow is modeled by the lattice Boltzmann method (LBM); an immersed boundary scheme is employed to handle the interaction at the fluid-particle interface. The LBM is implemented in PFC and coupled with the existing DEM scheme. The accuracy of the LBM and LBM-PFC coupling is verified with a number of classic hydrodynamic (i.e., Poiseuille channel flow, lid-driven cavity flow, duct flow, Stokes's first and second problems) and fluid-particle interaction (i.e., fluid flow over fixed cylinder in channel flow, Taylor Couette flow, particle settling inside tube, fluid flow over fixed sphere in channel flow) problems for which the analytical solutions are available for comparison.;The verified LBM-DEM coupling system is then applied to study three types of problems of fluid solid interaction or fluid flow in porous media. In the first type, two porous media flow problems with known analytical solutions, i.e., creeping flow in periodic pore and upward seepage flow through a single column of spherical particles, are simulated in LBM-PFC system. In the simulation of creeping flow in periodic pore, the friction coefficients of flow through idealized porous media are measured for various solid volume fractions and compared with the corresponding analytical solutions. In the upward seepage flow simulation, the fluid drag forces on the grains, the seepage induced deformation of the solid matrix and pore pressure development and distribution in the pore space are monitored and compared with the analytical solutions. In the second type, three widely utilized empirical laws describing porous media flow, i.e., Darcy's law, Carman-Kozeny relation and Ergun equation, are tested. The numerical simulations show that the fundamental macroscopic physical laws in general porous media flow can be well recovered in this system. In the third type, the developed coupling system is used as a virtual laboratory to experiment two laboratory observations. The first simulation shows that the DKT (Drafting-Kissing-Tumbling) cycles of two particles settling inside fluid tank observed in physical laboratory can be repeated in the LBM-PFC coupling system. The second simulation reproduces the collapse and re-forming of sand arches in the perforation cavity under increasing fluid pressure gradient, as observed in the physical experiments.
机译:流体流过多孔介质的问题可以看作是两相系统,即固体颗粒骨架和孔隙空间,充满了固定或运动的流体(例如空气,气体,水,油等)。大多数多孔介质流动问题可以用在宏观尺度上连续体框架内提出的孔隙力学理论来合理描述。但是,对于诸如油井出砂这样的问题(其中沿固体-流体界面的界面物理支配了系统的性能),连续模型中采用的宏观平均方法由于以下原因无法捕获主要的物理过程:它的低分辨率和无法处理塌陷的固体基质。为了捕获局部尺度的流固相互作用,必须对固体骨架中的晶粒进行精确建模,并且需要以比孔隙和晶粒更精细的分辨率模拟孔隙空间中的流体流动。固体骨架由商业独特元素方法(DEM)代码PFC中颗粒独特元素的组装表示;用格子玻尔兹曼法(LBM)模拟孔尺度的流体流动。采用浸没边界方案来处理流体-颗粒界面处的相互作用。 LBM在PFC中实现,并与现有的DEM方案耦合。 LBM和LBM-PFC联轴器的精度已通过许多经典的流体动力学(即泊瓦伊埃河道水流,盖驱动的腔体流,导管流,斯托克斯的第一个和第二个问题)和流体-颗粒相互作用(例如,流体流)进行了验证。通道中的固定圆柱体,泰勒库埃特流,管内颗粒沉降,通道中的固定球体上的流体流)的问题,这些分析解决方案可供比较。;然后,将经过验证的LBM-DEM耦合系统用于研究三个多孔介质中流体固相相互作用或流体流动的问题类型。在第一类中,在LBM-PFC系统中模拟了两种具有已知分析方法的多孔介质流动问题,即周期性孔隙中的蠕变流和通过单列球形颗粒的向上渗流。在模拟周期性孔隙中的蠕变流动时,测量了各种固体体积分数下流过理想化多孔介质的摩擦系数,并与相应的分析解决方案进行了比较。在向上的渗流模拟中,对颗粒上的流体阻力,渗流引起的固体基质变形以及孔隙空间中孔隙压力的发展和分布进行了监测,并将其与解析解进行了比较。在第二种类型中,测试了描述多孔介质流的三种广泛使用的经验定律,即达西定律,卡曼-科泽尼关系和埃尔根方程。数值模拟表明,该系统可以很好地恢复一般多孔介质流动中的基本宏观物理定律。在第三种类型中,将开发的耦合系统用作虚拟实验室,以对两个实验室观察结果进行实验。第一次模拟表明,在物理实验室观察到的两个颗粒在液罐内部沉降的DKT(起草-接吻-翻转)循环可以在LBM-PFC耦合系统中重复进行。如物理实验中所观察到的那样,第二次模拟再现了在流体压力梯度增加的情况下射孔腔中沙拱的塌陷和重塑。

著录项

  • 作者

    Han, Yanhui.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Applied Mechanics.;Engineering Petroleum.;Engineering Civil.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:31

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号