首页> 外文学位 >Hydrodynamic escape from planetary atmospheres.
【24h】

Hydrodynamic escape from planetary atmospheres.

机译:来自行星大气层的流体动力逃逸。

获取原文
获取原文并翻译 | 示例

摘要

Hydrodynamic escape is an important process in the formation and evolution of planetary atmospheres. Due to the existence of a singularity point near the transonic point, it is difficult to find transonic steady state solutions by solving the time-independent hydrodynamic equations. In addition to that, most previous works assume that all energy driving the escape flow is deposited in one narrow layer. This assumption not only results in less accurate solutions to the hydrodynamic escape problem, but also makes it difficult to include other chemical and physical processes in the hydrodynamic escape models.; In this work, a numerical model describing the transonic hydrodynamic escape from planetary atmospheres is developed. A robust solution technique is used to solve the time dependent hydrodynamic equations. The method has been validated in an isothermal atmosphere where an analytical solution is available. The hydrodynamic model is applied to 3 cases: hydrogen escape from small orbit extrasolar planets, hydrogen escape from a hydrogen rich early Earth's atmosphere, and nitrogen/methane escape from Pluto's atmosphere.; Results of simulations on extrasolar planets are in good agreement with the observations of the transiting extrasolar planet HD209458b. Hydrodynamic escape of hydrogen from other hypothetical close-in extrasolar planets are simulated and the influence of hydrogen escape on the long-term evolution of these extrasolar planets are discussed.; Simulations on early Earth suggest that hydrodynamic escape of hydrogen from a hydrogen rich early Earth's atmosphere is about two orders magnitude slower than the diffusion limited escape rate. A hydrogen rich early Earth's atmosphere could have been maintained by the balance between the hydrogen escape and the supply of hydrogen into the atmosphere by volcanic outgassing. Origin of life may have occurred in the organic soup ocean created by the efficient formation of prebiotic molecules in the hydrogen rich early Earth's atmosphere.; Simulations show that hydrodynamic escape of nitrogen from Pluto is able to remove a ∼3 km layer of ice over the age of the solar system. The escape flux of neutral nitrogen may interact with the solar wind at Pluto's orbit and may be detected by the New Horizon mission.
机译:流体动力逸出是行星大气形成和演化的重要过程。由于在跨音速点附近存在奇异点,因此难以通过求解与时间无关的流体动力学方程来找到跨音速稳态解。除此之外,大多数先前的工作都假设驱动逃逸流的所有能量都沉积在一个狭窄的层中。这种假设不仅导致对流体动力逃逸问题的准确度较低,而且使得在流体动力逸出模型中难以包含其他化学和物理过程。在这项工作中,建立了描述跨音速流体动力从行星大气逸出的数值模型。鲁棒的求解技术用于求解与时间有关的流体动力学方程。该方法已在可提供分析溶液的等温气氛中得到验证。该流体力学模型适用于3种情况:氢从小型轨道太阳系外行星逸出,氢从富含氢的早期地球大气中逸出以及氮/甲烷从冥王星大气中逸出。太阳系外行星的模拟结果与正在过渡的太阳系外行星HD209458b的观测结果非常吻合。模拟了其他假设的近太阳系外行星的氢的流体动力学逸出,并讨论了氢逸出对这些太阳系外行星长期演化的影响。在地球早期的模拟表明,氢从富含氢的早期地球大气中的水动力逸出速度比扩散受限的逸出速度慢大约两个数量级。氢逸出与通过火山放气向大气中供应氢之间的平衡可以维持地球早期富氢的大气。生命的起源可能发生在有机汤海洋中,该汤海洋是由富含氢的早期地球大气中的益生元分子有效形成而形成的。模拟表明,在太阳系的整个使用期限内,氮从冥王星的流体动力逸出能够清除约3 km的冰层。中性氮的逸出通量可能会与冥王星轨道上的太阳风相互作用,并且可能会被“新视野”任务探测到。

著录项

  • 作者

    Tian, Feng.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Physics Astronomy and Astrophysics.; Physics Atmospheric Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 天文学;大气科学(气象学);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号