首页> 外文学位 >Physicomechanical, In Vitro and In Vivo Performance of 3D Printed Doped Tricalcium Phosphate Scaffolds for Bone Tissue Engineering and Drug Delivery.
【24h】

Physicomechanical, In Vitro and In Vivo Performance of 3D Printed Doped Tricalcium Phosphate Scaffolds for Bone Tissue Engineering and Drug Delivery.

机译:用于骨骼组织工程和药物输送的3D打印的掺杂磷酸三钙磷酸酯支架的物理力学,体外和体内性能。

获取原文
获取原文并翻译 | 示例

摘要

Although tricalcium phosphate (TCP) is widely used in bone tissue engineering, the strength degradation kinetics is not well controlled. This study focuses on the underlying mechanism of strength degradation kinetics by incorporating trace elements in TCP. The objective of this research is to modify the mechanical properties of TCP to achieve the desired degradation rate for the specific need, and improve the in vivo bioactivity for early wound healing by incorporating trace elements such as strontium (Sr2+), magnesium (Mg2+) and silicon (Si4+) as dopants. The hypothesis of this research is that the presence of different trace elements in TCP will influence its phase stability, microstructure, mechanical strength, and both in vitro and in vivo bioactivity.;Direct three dimensional printing (3DP) was used to fabricate designed interconnected macroporous pure and doped TCP scaffolds. Microwave sintering as opposed to conventional sintering was also used for better densification and higher mechanical strength. A maximum compressive strength of 10.95 ± 1.28 MPa and 12.01 ± 1.56 MPa were achieved for pure and Sr2+-Mg2+ doped TCP scaffolds with 500 µm designed pores (∼400 µm after sintering) sintered in microwave furnace, respectively. Substitution of Mg2+ and Sr2+ into calcium (Ca2+) sites of TCP crystal lattice contributed to phase stability and controlled gradual degradation. On the other hand, Si4+ substitution into phosphorous (P5+) sites destabilized the crystal structure and accelerated degradation of TCP.;Interconnected macroporous β-TCP scaffolds facilitated in vivo guided bone tissue regeneration through infiltration of cells and extracellular matrix into the designed pores. Presence of Sr2+, Mg2+ and Si4+ into β-TCP induced increased in vivo early bone formation and better bone remodeling through increased extracellular matrix production such as, collagen and osteocalcin, when tested in rat and rabbit distal femur model. The presence of Si4+ along with Mg 2+ induced increased new blood vessel formation. Our results exhibited that Sr2+, Mg2+ and Si4+ doped 3DP TCP scaffolds have strong potential in bone tissue engineering applications for early wound healing.
机译:尽管磷酸三钙(TCP)广泛用于骨组织工程,但强度降解动力学并未得到很好的控制。这项研究着重于通过在TCP中加入微量元素来实现强度退化动力学的基本机制。这项研究的目的是通过结合锶(Sr2 +),镁(Mg2 +)和微量元素来改善TCP的机械性能,以达到特定需求所需的降解速率,并提高体内生物活性以促进早期伤口愈合。硅(Si4 +)作为掺杂剂。这项研究的假设是,TCP中不同微量元素的存在将影响其相稳定性,微观结构,机械强度以及体内和体外的生物活性。;直接三维印刷(3DP)用于制造设计的互连大孔纯净和掺杂的TCP支架。与常规烧结相反,微波烧结也用于更好的致密化和更高的机械强度。纯的和掺有Sr2 + -Mg2 +的TCP支架的最大抗压强度分别为10.95±1.28 MPa和12.01±1.56 MPa,该支架在微波炉中烧结有500 µm设计孔(烧结后约为400 µm)。 Mg2 +和Sr2 +取代成TCP晶格的钙(Ca2 +)位点有助于相稳定性和受控的逐步降解。另一方面,Si4 +取代入磷(P5 +)位点会破坏TCP的晶体结构并加速其降解。相互连接的大孔β-TCP支架通过细胞和细胞外基质渗透到设计的孔中,促进了体内指导的骨组织再生。在大鼠和兔股骨远端模型中进行测试时,β-TCP中存在Sr2 +,Mg2 +和Si4 +会导致体内早期骨骼形成增加,并通过增加细胞外基质的生成(例如胶原蛋白和骨钙素)来改善骨骼重塑。 Si4 +和Mg 2+的存在诱导了新血管形成的增加。我们的研究结果表明,Sr2 +,Mg2 +和Si4 +掺杂的3DP TCP支架在骨组织工程应用中具有强大的潜力,可用于早期伤口愈合。

著录项

  • 作者

    Tarafder, Solaiman.;

  • 作者单位

    Washington State University.;

  • 授予单位 Washington State University.;
  • 学科 Engineering Biomedical.;Engineering Materials Science.;Health Sciences Pharmacy.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 286 p.
  • 总页数 286
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号